
4
ALGORITMOS DE AGRUPAMIENTO

(CLUSTERING)

El agrupamiento de objetos es tan antiguo como la necesidad humana de
describir las características destacadas de los objetos e identificarlos en alguna
clase. Además, abarca diversas disciplinas: desde las matemáticas y la estadística
hasta la genética y la biología, cada una de ellas hace uso de distintos términos
para describir las topologías usando este análisis. Desde los síndromes médicos y
genotipos genéticos, hasta las taxonomías biológicas o los grupos de tecnología; el
problema es el mismo: encontrar categorías de entidades y asignar a los individuos a
los grupos apropiados en ellas.

Los algoritmos de agrupamiento o de clustering por su nombre en inglés,
son una herramienta extensivamente utilizada en el aprendizaje no supervisado
para organizar, caracterizar, clasificar y modelar información y datos. Estos
algoritmos dividen un conjunto de datos en distintos grupos de manera en que las
diferencias entre estos grupos son menores que la diferencia que hay con el resto
de ellos. En este capítulo se abordarán distintos algoritmos de agrupamiento,
como los algoritmos secuenciales, basados en centroide, basados en densidad y los
algoritmos de agrupamiento jerárquico. Al avanzar en el capítulo cada una de estas
técnicas será analizada de manera individual partiendo desde un enfoque teórico
para posteriormente mostrar su implementación en lenguaje Python para facilitar la
comprensión de cada uno de ellos.

4.1	 INTRODUCCIÓN

Los algoritmos de agrupamiento y clasificación son una tarea fundamental
en la inteligencia computacional. Mientras que los algoritmos de clasificación son

204 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORÍA Y PRÁCTICAS CON PYTHON	 © RA-MA

mayoritariamente utilizados como métodos de aprendizaje supervisado en los que
se entrena partiendo de un conjunto de datos etiquetado en el cual se conocen las
salidas correspondientes al vector de información de entrada. En el aprendizaje no
supervisado no se cuenta con esta información, es en estos casos cuando se cuenta
con los algoritmos de agrupamiento, cuyo objetivo es descubrir un nuevo conjunto
de grupos que sean similares entre si dependiendo de sus características.

Los algoritmos de agrupamiento dividen el conjunto de datos en subconjuntos
de tal manera que datos con instancias similares son agrupados juntos, mientras que
aquellos cuyas instancias sean diferentes pertenecerán a grupos distintos. Tales
instancias, deberán por lo tanto ser organizadas de una manera que el conjunto de
datos muestreado sea caracterizado eficientemente.

4.2	 DEFINICIÓN DE CLÚSTER

Formalmente, la estructura de los algoritmos de agrupamiento está
representada partiendo de un conjunto de datos X={x1,x2,…,xn} y dividiéndolo en un
conjunto de subconjuntos (clústeres) C={C1,C2,…,Ck} de S tal que:

(4.1)

(4.2)

(4.3)

en consecuencia, cualquier instancia en S puede pertenecer exactamente a solo un
subconjunto Ci.

Debido a que los algoritmos de agrupamiento dividen el conjunto de datos
de acuerdo con la similitud de sus características, es necesario tener una métrica que
determine qué tan similares o diferentes son dos objetos.

4.3	 MÉTRICAS DE PROXIMIDAD

Debido a que los algoritmos de agrupamiento dividen el conjunto de datos
de acuerdo con la similitud de sus características, es necesario tener una métrica
que determine qué tan similares o diferentes son dos objetos. Existen distintas
métricas de proximidad para estimar esta relación, medidas de similitud y medidas
de disimilitud.

© RA-MA	 Capítulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 205

Para comenzar, es posible definir una métrica de disimilitud d en X como
una función:

(4.4)

Siendo ℝ el conjunto de los números reales de tal manera que:

(4.5)

Y:

(4.6)

Adicionalmente:

(4.7)

Además

(4.8)

De esta manera d puede ser llamada una métrica DM de desigualdad.
Finalmente, la igualdad presentada en la ecuación 4.7 indica que el menor valor
de desigualdad d0 posible entre dos vectores del conjunto X se alcanza solo si estos
vectores son idénticos. Es frecuente mencionar las métricas de disimilitud como una
distancia aunque este término no sea utilizado en el sentido matemático más estricto.

Por otro lado, una métrica de similitud (SM) s en X esta definida como una
función:

(4.9)

De tal manera que:

(4.10)

Y:

(4.11)

Adicionalmente:

(4.12)

206 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORÍA Y PRÁCTICAS CON PYTHON	 © RA-MA

Además

(4.13)

4.3.1	 Métricas de disimilitud

Entre las métricas de disimilitud una de las más ampliamente usadas es la
conocida como la distancia euclidiana que está definida como:

(4.14)

Donde x,yX y xi,yi son las i-esimas coordenadas de x e y respectivamente.
En esta métrica de disimilitud d0 tiene un valor igual a cero, siendo esta la
mínima distancia disponible entre dos vectores de X. Cumpliendo también que la
distancia entre un vector y si mismo es igual a d0. Además, es fácil observar que
d(x,y)=d(y,x) cumpliendo así todos los requisitos para ser considerada una métrica
de disimilitud.

Si bien, la distancia euclidiana es una de las métricas de disimilitud más
conocidas, en el resto de la sección se abordarán otras métricas que también pueden
ser del interés del lector.

Entre las métricas de disimilitud más comunes usadas en la práctica podemos
tomar en cuenta las siguientes:

La métrica pesada lp dada por la siguiente ecuación:

(4.15)

Siendo de xi,yi las i-ésimas coordenadas de los vectores x,y y wi un valor
mayor a cero el i-ésimo coeficiente de ponderación de dichos vectores y coordenadas.
De esta norma deriva la distancia euclidiana cuando se ajusta el valor p=2.

De este caso también deriva la distancia Manhattan dada por:

(4.16)

© RA-MA	 Capítulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 207

4.3.2	 Métricas de similitud

Del otro lado, las métricas de similitud más conocidas son:

Métrica del producto interno: esta métrica está dada por:

(4.17)

esta métrica suele ser utilizada cuando los vectores x,y están normalizados de manera
que tengan el mismo tamaño.

Otra métrica importante relacionada con la métrica del producto interno es
la métrica del coseno dada por:

(4.18)

Siendo:

(4.19)

Y

(4.20)

4.4	 PASOS BÁSICOS PARA HACER AGRUPAMIENTO

Una vez repasados los conceptos básicos y definiciones de los algoritmos
de agrupamiento y medidas de proximidad es sencillo desempeñar una tarea de
agrupamiento dividiéndola en los siguientes pasos:

1.	 Selección de características: estas deben ser seleccionadas de manera en
que contengan la mayor cantidad de información posible respecto a la
tarea de interés, al mismo tiempo, es necesario evitar tener redundancias
en los vectores de características.

2.	 Selección de métrica de proximidad: esta métrica, como ya fue
mencionado en la sección anterior, cuantifica qué tan similares o
diferentes son los vectores de características. Es importante tomar en

208 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORÍA Y PRÁCTICAS CON PYTHON	 © RA-MA

cuenta que las características seleccionadas afecten de igual manera a la
métrica de proximidad.

3.	 Selección del criterio de agrupamiento: este criterio depende de la
interpretación que el experto de en términos de sensibilidad, basándose
en los tipos de grupos que se espere encontrar en el conjunto de datos.

4.	 Selección del algoritmo de agrupamiento: una vez definidos el criterio de
agrupamiento y la métrica de proximidad, el siguiente paso es escoger el
algoritmo de agrupamiento adecuado con respecto al conjunto de datos
con el que se va a trabajar.

5.	 Validación de los resultados: una vez que el algoritmo de agrupamiento
ha terminado su tarea, es necesario verificar la fiabilidad de los resultados
arrojados por este último. Esto último se lleva a cabo aplicando las
pruebas adecuadas.

6.	 Interpretación de los resultados: finalmente los resultados arrojados
por el algoritmo deben ser interpretados por un experto en el campo de
aplicación en conjunto con otra evidencia experimental para llegar a una
conclusión adecuada.

4.5	 ALGORITMOS DE AGRUPAMIENTO CLÁSICOS

En secciones anteriores, se discutieron las definiciones básicas de grupos
(clusters), métricas de proximidad, y los pasos básicos a desempeñar para llevar a
cabo una tarea de agrupamiento. En esta sección se discutirán de manera detallada
algunos de los algoritmos clásicos de agrupamiento y la manera adecuada de obtener
el número de clústeres que suelen pedir varios de los algoritmos en cuestión.

4.5.1	 Cálculo del posible número de grupos a obtener
En la actualidad existen varios algoritmos que piden al usuario la cantidad

máxima de grupos para dividir el conjunto de datos. En general, si se tienen el tiempo
y los recursos necesarios, la mejor manera de asignar los vectores de características
de xi ,i=1,…,N de un conjunto de datos X a grupos distintos, sería encontrar todas las
posibles particiones de grupos posibles y seleccionar la más adecuada de acuerdo con
el criterio de agrupamiento seleccionado. Sin embargo, es virtualmente imposible
llevar acabo esta tarea incluso para un valor moderado de vectores de características
N debido a lo extenuante de esta tarea. Por lo que en realidad podemos marcar
S(N,m) como el número de agrupamientos posibles de N vectores de características

© RA-MA	 Capítulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 209

divididos en m grupos. Recordando que por definición no pueden existir grupos
vacíos, se pueden fijar las siguientes condiciones:

(4.21)

(4.22)

(4.23)

Definiendo LK
N-1 como la lista que contiene todas las posibles agrupaciones

de N-1 vectores en k grupos para k = m,m-1. El N-esimo vector puede ya ser añadido
a cualquiera de los grupos de Lm

N-1, o formar un nuevo grupo con cualquier miembro
de Lm-1

N-1, por lo tanto, es posible escribir que:

(4.24)

Guiando a que la solución de la ecuación 4.24 son los también llamados
números de Stirling de segundo tipo dados por:

(4.25)

4.5.2	 Algoritmo Básico de Agrupamiento Secuencial
En esta sección se explicará el algoritmo básico de agrupamiento secuencial

(BSAS), el cual generaliza lo discutido previamente. Para este algoritmo es necesario
considerar que todos los vectores de características son pasados por el algoritmo una
única vez. Otra cuestión que considerar es, que para realizar el algoritmo el número
de grupos no es conocido a priori ya que el algoritmo los va creando con el paso de
las iteraciones.

Tomando la función d(x,C) como una métrica de disimilitud o distancia
entre el vector de características y el grupo C siendo este último definido a través
de una medida de representación rep. En este caso se utilizará la media de todos
los puntos que conforman el grupo. Es importante recalcar que durante previo al
funcionamiento del algoritmo el usuario debe definir ciertos parámetros necesarios
para el correcto funcionamiento de éste, estos parámetros son: el número máximo de
grupos permitidos q y el umbral máximo de disimilitud permitido th.

La idea básica del algoritmo plantea lo siguiente:

	z Cada vector de características es presentado una única ocasión al
algoritmo.

210 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORÍA Y PRÁCTICAS CON PYTHON	 © RA-MA

	z Cuando un vector es analizado por el algoritmo, dependiendo del valor de
la medida de disimilitud, este puede ser asignado a un grupo previamente
existente o bien, formar un grupo nuevo.

	z Este proceso se repite hasta analizar todos los vectores de características.

El flujo del algoritmo se puede seguir en la Figura 4.1

Figura 4.1 Diagrama de flujo algoritmo de agrupamiento BSAS

A continuación, se muestra un ejemplo de implementación del algoritmo
BSAS en Python:

© RA-MA	 Capítulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 211

Código 4.1 Algoritmo BSAS en Python

import numpy as np

import matplotlib.pyplot as plt

def BSAS(X, th, q, orden):

 # Reordenar datos si se proporciona un orden específico

 l, N = X.shape

 if len(order) == N:

 X = X[:,orden]

Inicialización

 n_clust = 1

 bel = np.zeros(N,dtype=int)

 bel[0] = n_clust

matriz de centroides (cada columna es un clúster)

 m = X[:,[0]]

 for i in range(1, N):

 m2 = m.shape[1]

Calcular distancias a los centroides existentes

 distances = np.sqrt(np.sum((m - X[:,i].reshape(-1,1))**2,

axis=0))

 s1 = np.min(distances)

 s2 = np.argmin(distances)

 if s1 > th and n_clust < q:

 n_clust += 1

 bel[i] = n_clust

 m = np.hstack((m, X[:,[i]]))

 else:

 bel[i] = s2 + 1

 count = np.sum(bel[:i+1] == bel[i])

 m[:, s2] = ((count - 1) * m[:,s2] + X[:,i]) / count

 return bel, m

212 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORÍA Y PRÁCTICAS CON PYTHON	 © RA-MA

Ejemplo 4.1:

Utilizar el algoritmo BSAS para hacer un agrupamiento sobre un conjunto
de datos aleatorio, el umbral de distancia máxima para entrar al grupo th será de 4 y
el número máximo de grupos permitido q será de 5.

Solución:

Código 4.2 Ejemplo de Uso de algoritmo BSAS en Python

----------- Generación de datos aleatorios -----------
np.random.seed(0)
cluster1 = np.random.randn(2,20) + np.array([[5],[5]])
cluster2 = np.random.randn(2, 20) + np.array([[0],[0]])
cluster3 = np.random.randn(2, 20) + np.array([[5],[-5]])
X = np.hstack((cluster1,cluster2,cluster3))
Mezclar el orden
order = np.random.permutation(X.shape[1])
----------- Ejecutar BSAS -----------
theta = 4.0 # Umbral de distancia
q = 5 # Número máximo de clusters
labels,centroids = BSAS(X,theta,q,order)
----------- Visualización -----------
plt.figure(figsize=(8, 6))
for k in np.unique(labels):
 idx = np.where(labels == k)
 plt.scatter(X[0,idx],X[1,idx],label=f’Cluster{k}’)
plt.scatter(centroids[0,:],centroids[1,:],c=’black’,marker=’x’,\
s=100,label=’Centroides’)
plt.title(‘Agrupamiento con BSAS’)
plt.xlabel(‘X1’)
plt.ylabel(‘X2’)
plt.legend()
plt.grid(True)
plt.show()

Es necesario aclarar que para el funcionamiento de este código debe incluirse
la definición del algoritmo BSAS mostrada en el código 4.1, además de incluir los
módulos de numpy y matplot lib en el intérprete que desee utilizarse. Como resultado
el algoritmo 4.2 arrojará lo siguiente:

© RA-MA	 Capítulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 213

Figura 4.2 Resultado de Agrupación de algoritmo BSAS

Como se puede observar, el algoritmo detecta 3 grupos posibles marcando el
centroide de cada uno de ellos con una “×”.

4.5.3	 Algoritmo K-medias (K-means)

En esta sección será presentado uno de los algoritmos de agrupamiento
más ampliamente utilizados en una gran variedad de aplicaciones de inteligencia
computacional, el algoritmo K-medias mejor conocido por su nombre en inglés
como K-means.

Este algoritmo divide un conjunto de vectores x=(x1,x2,…,xn) en m grupos
G=(g1,g2,…,gm). La medida de representación de los grupos en el algoritmo
K-medias está definida por el centroide ci ,i=1,2,…,m el cual se calcula minimizando
una función de costo en la cual se asume como métrica de disimilitud la distancia
euclidiana. Esta función de costo está definida de la siguiente manera:

(4.26)

214 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORÍA Y PRÁCTICAS CON PYTHON	 © RA-MA

Siendo J la función de costo a minimizar atribuida al grupo gi. De acuerdo
con la ecuación 4.26, el valor de J depende exclusivamente de la distribución espacial
de los vectores pertenecientes a gi y de la posición de su centroide ci.

La separación de los vectores de características en cada grupo está definida
por un factor ui,j. Este factor, determina de forma binaria la correspondencia de un
vector con un grupo gi de la siguiente manera:

(4.27)

Siendo así que agregando este factor a la ecuación 4.26 esta se puede escribir
como:

(4.28)

Representando esto la suma de las distancias al cuadrado de cada vector xi
perteneciente al grupo gi.

Teniendo todo esto en cuenta, el problema de agrupamiento de datos se
puede resolver al encontrar los valores de ui,j y ci que minimicen J. Este método
minimiza J a través de un proceso iterativo que se divide en dos fases:

Primera Fase

En esta fase se optimiza J respecto a ui,j manteniendo fijas las posiciones de
los centroides ci los cuales en la primera iteración son colocados de manera aleatoria,
para esto se aprovecha que el valor de J varia linealmente respecto a los valores de ui,j.
Dado que cada término ui,j involucra un grupo independiente y diferente gi, es posible
encontrar de manera separada cada termino ui,j. Con esto en cuenta se elijen los valores
de ui,j =1 al centroide que tenga la mínima distancia con el vector de características que
está siendo analizado, es decir, se asigna el vector de características xi al grupo más
cercano. Esto se puede formular matemáticamente de la siguiente manera:

(4.29)

Segunda Fase

En esta fase, se determina el valor de los centroides manteniendo fijos los
valores de ui,j previamente obtenidos. Dado que los valores de la función objetivo
varían de forma cuadrática respecto al valor de los centroides ci., el valor de J se puede

© RA-MA	 Capítulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 215

minimizar igualando a 0 el valor de la derivada de J con respecto a ci. Obteniendo de
esto la siguiente expresión:

(4.30)

A partir de la cual se puede obtener el valor de los centroides de la siguiente
manera:

(4.31)

Una vez completada la segunda etapa, el proceso se repite iterativamente
hasta que no haya cambios en los valores de los centroides. En la figura 4.3 se puede
seguir el paso a paso del algoritmo K-medias a manera de diagrama de flujo.

Figura 4.3 Diagrama de flujo del algoritmo K-medias, en él, la variable n es el número de vectores
de características a ser analizados y m es el número de grupos definido por el usuario

216 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORÍA Y PRÁCTICAS CON PYTHON	 © RA-MA

Ejemplo 4.2

A continuación, se muestra un ejemplo de implementación del algoritmo
K-medias en Python utilizado para separar el siguiente conjunto de datos en 4 grupos:

Figura 4.4 Conjunto de Datos a analizar por el algoritmo

Solución:

Código 4.3 Implementación del Algoritmo K-medias para agrupar un
conjunto de datos

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from scipy.io import arff
import pandas as pd

Leer el archivo ARFF

© RA-MA	 Capítulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 217

data, meta = arff.loadarff(‘shapes.arff’)

Convertir a DataFrame para manejo más cómodo
df = pd.DataFrame(data)

Asegurarse de que los datos estén en formato numérico (por si hay
bytes)
df[‘x’] = pd.to_numeric(df[‘x’], errors=’coerce’)
df[‘y’] = pd.to_numeric(df[‘y’], errors=’coerce’)

Extraer variables
x = df[‘x’].values
y = df[‘y’].values

Visualizar datos originales
plt.figure()
plt.plot(x, y, ‘o’)
plt.title(‘Datos originales’)
plt.xlabel(‘x’)
plt.ylabel(‘y’)
plt.grid(True)
plt.show()

Preparar datos para clustering
D = np.column_stack((x, y))

Aplicar K-means con 4 clusters
kmeans = KMeans(n_clusters=4, random_state=0)
idx = kmeans.fit_predict(D)

Visualización de resultados
plt.figure()
colors = [‘g’, ‘r’, ‘k’, ‘y’]
for i in range(4):
 cluster_points = D[idx == i]
 plt.plot(cluster_points[:, 0], cluster_points[:, 1], ‘o’ +
colors[i],\
 label=f’Cluster {i+1}’)

Graficar los centroides

218 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORÍA Y PRÁCTICAS CON PYTHON	 © RA-MA

centroids = kmeans.cluster_centers_
plt.scatter(centroids[:,0],centroids[:,1],s=150,c=’blue’,marker=’X’,\
label=’Centroides’)

plt.title(‘Resultados de K-means’)
plt.xlabel(‘x’)
plt.ylabel(‘y’)
plt.legend()
plt.grid(True)
plt.show()

Resultado:

Figura 4.5 Resultado de Agrupamiento con algoritmo K-medias

Como se puede apreciar, el algoritmo separa el conjunto de datos de acuerdo
con la distribución espacial de las nubes de datos asignándolos a su centroide más
cercano. Es necesario aclarar que para que el código 4.3 funcione se necesita tener el
archivo “shapes.arff” en la misma carpeta que se ejecute el código. Este archivo será
añadido en el material complementario de la página web del libro.

© RA-MA	 Capítulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 219

4.5.4	 Algoritmos de Agrupamiento Jerárquico

En esta sección serán analizados los algoritmos de agrupamiento jerárquico.
Estos algoritmos realizan una serie de particiones sobre el conjunto de datos de tal
manera que permite que sean visualizadas en un diagrama de árbol comúnmente
conocido como dendrograma. Como se puede apreciar en la Figura 4.6, esta es una
estructura configurada de tal manera en que cada elemento D del nivel más bajo del
árbol representan un grupo individual, mientras que el elemento raíz Dr del árbol
representa el grupo formado por la unión de todos los vectores de características a
analizar. Tomando en cuenta estas consideraciones, en los niveles intermedios del
árbol es posible encontrar diversas agrupaciones de los vectores de características
dependiendo de las distancias relativas entre ellos.

Figura 4.6 Ejemplo de Dendrograma

Este tipo de algoritmos se pueden dividir en dos enfoques principales: los
métodos de aglomeración, los cuales empiezan por definir para cada uno de los
n elementos a agrupar un grupo individual. Teniendo de esta manera n grupos y,
con ellos, el algoritmo realiza un proceso iterativo de unión de los grupos que de
acuerdo con un criterio de similitud tienden a estar más relacionados. Por la otra
parte, los procesos de agrupamiento jerárquico divisivos realizan la tarea opuesta,
es decir, el algoritmo inicia con un grupo principal que contiene todos los vectores
de características a analizar y lo va separando en grupos que de acuerdo con un
criterio de disimilitud son diferentes del grupo. Debido al carácter introductorio de
este libro, en esta sección se abordará únicamente los algoritmos aglomerativos que
son ampliamente más populares.

Formalmente se puede definir el agrupamiento jerárquico de la siguiente
manera: dado un conjunto de datos D={x1,x2,…,xn} para xi∈ℝd, el objetivo de

220 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORÍA Y PRÁCTICAS CON PYTHON	 © RA-MA

un algoritmo de agrupación jerárquica es particionar el conjunto D en m grupos
G={g1,g2,…,gm}. Se dice que un conjunto de grupos A={a1,a2,…,as} está
anidado en otro conjunto B={b1,b2,…,bt} únicamente si s>t de manera que cada
grupo aiA existe un grupo bjB para el que aibj. Durante el agrupamiento
aglomerativo, se produce una serie de particiones anidadas p1,p2,…,pn iniciando
con p1={(x1),(x2),…,(xn)} en la que cada dato pertenece a un grupo individual.
Después de esto, el algoritmo realizara un proceso iterativo hasta terminar con un
grupo que incluya todo el conjunto de datos a analizar pn={(x1,x2,…,xn)}. Tomando
en cuenta estas definiciones es posible decir que la partición pn se encuentra
anidada en la partición pn+1.

Al comienzo de la ejecución de los métodos de agrupamiento aglomerativos,
la primera partición considera a cada uno de los vectores de características como un
grupo individual. Después, con el avance del algoritmo, este irá uniendo los grupos
de acuerdo con la similitud que presenten con base en una métrica dada. Dicho
esto, suponiendo que iniciando con la partición pn={g1,g2,…,gn} se presentan al
algoritmo dos grupos g1 y g2 a ser analizados, al ser estos grupos los que presentan
mayor similitud, el algoritmo tomará la decisión de fusionarlos en uno solo, dando
como resultado g1,2=g1g2 y formando una partición nueva pn+1={g1,g2,…,gn} en
la que los grupos g1 y g2 son sustituidos por la unión de estos g1,2. De esta manera
el proceso se ejecuta iterativamente hasta que se tiene la partición con un único
grupo que incluye a todos los vectores de características. Tomando en cuenta que
durante cada iteración el número de grupos se ve reducido en uno, el número de
iteraciones totales del algoritmo será reducido a n pasos. Aunque es posible dejar
un criterio de paro establecido para que el algoritmo se detenga en el número de
grupos que de acuerdo con la separación natural de los pasos quede establecido.
El proceso de un algoritmo se puede resumir de la siguiente manera:

1.

2.

3. Repetir
4.

5. gi,j=gigj

6. Hasta |P| = m

Algoritmo 4.1 Pseudocódigo Procedimiento Algoritmo de Agrupación Jerarquico

© RA-MA	 Capítulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 221

Ejemplo 4.3

A continuación, se muestra un ejemplo de implementación del algoritmo de
agrupamiento aglomerativo en Python utilizado para separar el siguiente conjunto
de datos:

Figura 4.7 Conjunto de datos a analizar por algoritmo aglomerativo

Código 4.4 Implementación Algoritmo de Agrupamiento Aglomerativo en
Python

Import numpy as np
from scipy.cluster.hierarchy import linkage, dendrogram, fcluster
from scipy.spatial.distance import pdist
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture

Parámetros de las distribuciones
muD = np.array([[-2.1, 1.28], [-1.2, -1.40], [2.64, 0.19]])
sigmaD = np.array([
 [[0.59, 0], [0, 0.11]],

222 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORÍA Y PRÁCTICAS CON PYTHON	 © RA-MA

 [[0.49, 0], [0, 0.11]],
 [[0.05, 0], [0, 0.21]]
])
p = np.ones(3) / 3

Generación de datos usando mezcla gaussiana
gmm = GaussianMixture(n_components=3, covariance_type=’full’)
gmm.weights_ = p
gmm.means_ = muD
gmm.covariances_ = sigmaD
gmm.precisions_cholesky_ = np.linalg.cholesky(np.linalg.inv(sigmaD))
X, _ = gmm.sample(40)

Cálculo de distancias y clustering jerárquico
Y = pdist(X)
Z = linkage(Y, method=’ward’) # MATLAB usa ‘ward’ por defecto

Dendrograma
plt.figure()
dendrogram(Z)
plt.title(“Dendrograma”)
plt.show()

Clasificación en 3 grupos
T = fcluster(Z, 3, criterion=’maxclust’)

Índices de cada grupo
Indice1 = np.where(T == 1)[0]
Indice2 = np.where(T == 2)[0]
Indice3 = np.where(T == 3)[0]

Gráfico por grupo
plt.figure()
plt.plot(X[Indice1, 0], X[Indice1, 1], ‘o’, label=’Cluster 1’)
plt.plot(X[Indice2, 0], X[Indice2, 1], ‘x’, label=’Cluster 2’)
plt.plot(X[Indice3, 0], X[Indice3, 1], ‘D’, label=’Cluster 3’)
plt.title(“Grupos separados”)
plt.legend()
plt.show()

© RA-MA	 Capítulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 223

Resultado:

Figura 4.8 Conjunto de datos separado después de ser analizado
por el algoritmo de agrupamiento aglomerativo

Figura 4.9 Dendrograma Resultante después de analizar el
conjunto de datos con algoritmo aglomerativo

224 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORÍA Y PRÁCTICAS CON PYTHON	 © RA-MA

4.6	 REFERENCIAS

[1] R. Xu and D. Wunsch, “A survey of clustering algorithms,” IEEE Transactions
on Neural Networks, vol. 16, no. 3, pp. 645–678, May 2005.

[2] D. Müllner, “Modern hierarchical, agglomerative clustering algorithms,” arXiv
preprint arXiv:1109.2378, Sep. 2011.

[3] N. Monath, et al., “Scalable Hierarchical Agglomerative Clustering,” arXiv
preprint arXiv:2010.11821, Oct. 2020.

[4] F. Murtagh and P. Legendre, “Ward’s Hierarchical Clustering Method: Clustering
Criterion and Agglomerative Algorithm,” arXiv preprint arXiv:1111.6285, Nov.
2011.

[5] S. Dudoit and J. Fridlyand, “Bagging to improve the accuracy of a clustering
procedure,” Bioinformatics, vol. 19, no. 9, pp. 1090–1096, Sep. 2003.

[6] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A Comparative Study of Efficient
Initialization Methods for the k-Means Clustering Algorithm,” arXiv preprint
arXiv:1209.1960, 2012.

[7] R. A. Fisher, “Clustering Algorithms I: Sequential Algorithms,” in Pattern
Recognition, Academic Press, 2007, pp. 331-344.

[8] E. A. Reyes and M. J. del Jesus, “A closer look into sequential clustering
algorithms,” International Journal of Intelligent Computing and Applications,
vol. 6, no. 2, pp. 103–121, 2014.

[9] T. Zhang, “An overview of clustering methods with guidelines for application,”
Data Science Reports, vol. 45, pp. 123–138, 2023.

[10] Wikipedia contributors, “Cluster analysis,” Wikipedia, The Free Encyclopedia,
2024. [Online]. Available: https://en.wikipedia.org/wiki/Cluster_analysis

