ALGORITMOS DE AGRUPAMIENTO
(CLUSTERING)

El agrupamiento de objetos es tan antiguo como la necesidad humana de
describir las caracteristicas destacadas de los objetos e identificarlos en alguna
clase. Ademas, abarca diversas disciplinas: desde las matematicas y la estadistica
hasta la genética y la biologia, cada una de ellas hace uso de distintos términos
para describir las topologias usando este andlisis. Desde los sindromes médicos y
genotipos genéticos, hasta las taxonomias bioldgicas o los grupos de tecnologia; el
problema es el mismo: encontrar categorias de entidades y asignar a los individuos a
los grupos apropiados en ellas.

Los algoritmos de agrupamiento o de clustering por su nombre en inglés,
son una herramienta extensivamente utilizada en el aprendizaje no supervisado
para organizar, caracterizar, clasificar y modelar informacion y datos. Estos
algoritmos dividen un conjunto de datos en distintos grupos de manera en que las
diferencias entre estos grupos son menores que la diferencia que hay con el resto
de ellos. En este capitulo se abordaran distintos algoritmos de agrupamiento,
como los algoritmos secuenciales, basados en centroide, basados en densidad y los
algoritmos de agrupamiento jerarquico. Al avanzar en el capitulo cada una de estas
técnicas sera analizada de manera individual partiendo desde un enfoque tedrico
para posteriormente mostrar su implementacion en lenguaje Python para facilitar la
comprension de cada uno de ellos.

4.1 INTRODUCCION

Los algoritmos de agrupamiento y clasificacion son una tarea fundamental
en la inteligencia computacional. Mientras que los algoritmos de clasificacion son

204 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORIA Y PRACTICAS CON PYTHON © RA-MA

mayoritariamente utilizados como métodos de aprendizaje supervisado en los que
se entrena partiendo de un conjunto de datos etiquetado en el cual se conocen las
salidas correspondientes al vector de informacion de entrada. En el aprendizaje no
supervisado no se cuenta con esta informacion, es en estos casos cuando se cuenta
con los algoritmos de agrupamiento, cuyo objetivo es descubrir un nuevo conjunto
de grupos que sean similares entre si dependiendo de sus caracteristicas.

Los algoritmos de agrupamiento dividen el conjunto de datos en subconjuntos
de tal manera que datos con instancias similares son agrupados juntos, mientras que
aquellos cuyas instancias sean diferentes perteneceran a grupos distintos. Tales
instancias, deberdn por lo tanto ser organizadas de una manera que el conjunto de
datos muestreado sea caracterizado eficientemente.

4.2 DEFINICION DE CLUSTER

Formalmente, la estructura de los algoritmos de agrupamiento estd
representada partiendo de un conjunto de datos X={x,,x,,...,.x,} y dividiéndolo en un
conjunto de subconjuntos (clusteres) C={C,,C,,...,C,} de S tal que:

k
UCI,:X, i=1,2,....k (4.1)

i=1
C+0, i=12,....k 4.2)
¢, NC, =@ i+ j,i,j=12,...,k (4.3)

en consecuencia, cualquier instancia en S puede pertenecer exactamente a solo un
subconjunto C..

Debido a que los algoritmos de agrupamiento dividen el conjunto de datos
de acuerdo con la similitud de sus caracteristicas, es necesario tener una métrica que
determine qué tan similares o diferentes son dos objetos.

4.3 METRICAS DE PROXIMIDAD

Debido a que los algoritmos de agrupamiento dividen el conjunto de datos
de acuerdo con la similitud de sus caracteristicas, es necesario tener una métrica
que determine qué tan similares o diferentes son dos objetos. Existen distintas
métricas de proximidad para estimar esta relacion, medidas de similitud y medidas
de disimilitud.

© RA-MA Capitulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 205

Para comenzar, es posible definir una métrica de disimilitud d en X como
una funcion:

d:XxX >R (4.4)

Siendo R el conjunto de los nimeros reales de tal manera que:

dd,e Ri—0 <d, < d(x,y) <400, Vx,ye X

d(x,x)=d, ,Vxe X (%)
Y:
d(x,y)=d(y.x)Vx,ye X (4.6)
Adicionalmente:
d(x,y)=d,siix=y 4.7)
Ademas
d(x,z)<d(x,y)+d(y,z),Vx,y,ze X (4.8)

De esta manera d puede ser llamada una métrica DM de desigualdad.
Finalmente, la igualdad presentada en la ecuacion 4.7 indica que el menor valor
de desigualdad d,, posible entre dos vectores del conjunto X se alcanza solo si estos
vectores son idénticos. Es frecuente mencionar las métricas de disimilitud como una
distancia aunque este término no sea utilizado en el sentido matematico mas estricto.

Por otro lado, una métrica de similitud (SM) s en X esta definida como una
funcion:

s XxX >R 4.9
De tal manera que:
ds,€ Ri—o0 <5, < s(x,y) <+, Vx,ye X

(4.10)
s(x,x)zso ,Vxe X

s(x,y)zs(y,x)Vx,yeX (4.11)

Adicionalmente:

s(x,y)zsosiixzy (4.12)

206 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORIA Y PRACTICAS CON PYTHON © RA-MA

Ademas

s(x,z)Ss(x,y)+s(y,z),Vx,y,zeX (4.13)

4.3.1 Métricas de disimilitud

Entre las métricas de disimilitud una de las mas ampliamente usadas es la
conocida como la distancia euclidiana que esta definida como:

d, (x,y)= /Z(x,,) (4.14)

Donde x,yeX'y x,y, son las i-esimas coordenadas de x e y respectivamente.
En esta métrica de disimilitud d, tiene un valor igual a cero, siendo esta la
minima distancia disponible entre dos vectores de X. Cumpliendo también que la
distancia entre un vector y si mismo es igual a d,. Ademas, es facil observar que
d(x,y)=d(y,x) cumpliendo asi todos los requisitos para ser considerada una métrica
de disimilitud.

Si bien, la distancia euclidiana es una de las métricas de disimilitud mas
conocidas, en el resto de la seccion se abordaran otras métricas que también pueden
ser del interés del lector.

Entre las métricas de disimilitud mas comunes usadas en la practica podemos
tomar en cuenta las siguientes:

La métrica pesada |, dada por la siguiente ecuacion:
! 1/p
d, (x,y):[Zwi|xi—yi|pj (4.15)
i=1

Siendo de x,y, las i-ésimas coordenadas de los vectores x,y y w, un valor
mayor a cero el i-ésimo coeficiente de ponderacion de dichos vectores y coordenadas.
De esta norma deriva la distancia euclidiana cuando se ajusta el valor p=2.

De este caso también deriva la distancia Manhattan dada por:

!
d,(x,y)=>wlx~y, (4.16)
i=1

© RA-MA Capitulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 207

4.3.2 Métricas de similitud
Del otro lado, las métricas de similitud mas conocidas son:

Meétrica del producto interno: esta métrica esta dada por:

!
S (57) =Xy =D X, (4.17)
i=1

esta métrica suele ser utilizada cuando los vectores x,y estan normalizados de manera
que tengan el mismo tamarfio.

Otra métrica importante relacionada con la métrica del producto interno es
la métrica del coseno dada por:

T

Xy
S (X, 0)= 4.18
(x.) [l (4.18)
Siendo:
1
Ixll=, > (4.19)
i=1
Y

Ivl=, /Zy2 (4.20)

4.4 PASOS BASICOS PARA HACER AGRUPAMIENTO

Una vez repasados los conceptos basicos y definiciones de los algoritmos
de agrupamiento y medidas de proximidad es sencillo desempefiar una tarea de
agrupamiento dividiéndola en los siguientes pasos:

1. Seleccion de caracteristicas: estas deben ser seleccionadas de manera en
que contengan la mayor cantidad de informacion posible respecto a la
tarea de interés, al mismo tiempo, es necesario evitar tener redundancias
en los vectores de caracteristicas.

2. Seleccion de métrica de proximidad: esta métrica, como ya fue
mencionado en la seccidén anterior, cuantifica qué tan similares o
diferentes son los vectores de caracteristicas. Es importante tomar en

208 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORIA Y PRACTICAS CON PYTHON © RA-MA

cuenta que las caracteristicas seleccionadas afecten de igual manera a la
métrica de proximidad.

3. Seleccion del criterio de agrupamiento: este criterio depende de la
interpretacion que el experto de en términos de sensibilidad, basandose
en los tipos de grupos que se espere encontrar en el conjunto de datos.

4. Seleccion del algoritmo de agrupamiento: una vez definidos el criterio de
agrupamiento y la métrica de proximidad, el siguiente paso es escoger el
algoritmo de agrupamiento adecuado con respecto al conjunto de datos
con el que se va a trabajar.

5. Validacion de los resultados: una vez que el algoritmo de agrupamiento
ha terminado su tarea, es necesario verificar la fiabilidad de los resultados
arrojados por este ultimo. Esto ultimo se lleva a cabo aplicando las
pruebas adecuadas.

6. Interpretacion de los resultados: finalmente los resultados arrojados
por el algoritmo deben ser interpretados por un experto en el campo de
aplicacion en conjunto con otra evidencia experimental para llegar a una
conclusion adecuada.

4.5 ALGORITMOS DE AGRUPAMIENTO CLASICOS

En secciones anteriores, se discutieron las definiciones basicas de grupos
(clusters), métricas de proximidad, y los pasos basicos a desempefar para llevar a
cabo una tarea de agrupamiento. En esta seccion se discutiran de manera detallada
algunos de los algoritmos clasicos de agrupamiento y la manera adecuada de obtener
el nimero de clusteres que suelen pedir varios de los algoritmos en cuestion.

4.5.1 Calculo del posible nimero de grupos a obtener

En la actualidad existen varios algoritmos que piden al usuario la cantidad
maxima de grupos para dividir el conjunto de datos. En general, si se tienen el tiempo
y los recursos necesarios, la mejor manera de asignar los vectores de caracteristicas
dex; ,i=1,...,N de un conjunto de datos X a grupos distintos, seria encontrar todas las
posibles particiones de grupos posibles y seleccionar la mas adecuada de acuerdo con
el criterio de agrupamiento seleccionado. Sin embargo, es virtualmente imposible
llevar acabo esta tarea incluso para un valor moderado de vectores de caracteristicas
N debido a lo extenuante de esta tarea. Por lo que en realidad podemos marcar
S(N,m) como el nimero de agrupamientos posibles de N vectores de caracteristicas

© RA-MA Capitulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 209

divididos en m grupos. Recordando que por definicién no pueden existir grupos
vacios, se pueden fijar las siguientes condiciones:

S(N,1)=1 (4.21)
S(N,N)=1 (4.22)
S(N,m)zO ,siim > N (4.23)

Definiendo L, como la lista que contiene todas las posibles agrupaciones
de N-1 vectores en k grupos para k = m,m-1. El N-esimo vector puede ya ser afiadido
a cualquiera de los grupos de L, ,, o formar un nuevo grupo con cualquier miembro
de Lm1, |, por lo tanto, es posible escribir que:

S(N,m)=mS(N—1,m)+S(N—-1,m-1) (4.24)
Guiando a que la solucion de la ecuacion 4.24 son los también llamados
numeros de Stirling de segundo tipo dados por:

Zm: (J (4.25)

=L
m!

4.5.2 Algoritmo Basico de Agrupamiento Secuencial

En esta seccion se explicara el algoritmo basico de agrupamiento secuencial
(BSAS), el cual generaliza lo discutido previamente. Para este algoritmo es necesario
considerar que todos los vectores de caracteristicas son pasados por el algoritmo una
unica vez. Otra cuestion que considerar es, que para realizar el algoritmo el nimero
de grupos no es conocido a priori ya que el algoritmo los va creando con el paso de
las iteraciones.

Tomando la funcién d(x,C) como una métrica de disimilitud o distancia
entre el vector de caracteristicas y el grupo C siendo este Gltimo definido a través
de una medida de representacion rep. En este caso se utilizara la media de todos
los puntos que conforman el grupo. Es importante recalcar que durante previo al
funcionamiento del algoritmo el usuario debe definir ciertos parametros necesarios
para el correcto funcionamiento de éste, estos parametros son: el nimero maximo de
grupos permitidos ¢ y el umbral maximo de disimilitud permitido .

La idea basica del algoritmo plantea lo siguiente:

7 Cada vector de caracteristicas es presentado una Unica ocasion al
algoritmo.

210 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORIA Y PRACTICAS CON PYTHON © RA-MA

¥ Cuando un vector es analizado por el algoritmo, dependiendo del valor de
la medida de disimilitud, este puede ser asignado a un grupo previamente
existente o bien, formar un grupo nuevo.

¥ Este proceso se repite hasta analizar todos los vectores de caracteristicas.

El flujo del algoritmo se puede seguir en la Figura 4.1

actualizar rep

A

fin
Figura 4.1 Diagrama de flujo algoritmo de agrupamiento BSAS

A continuacion, se muestra un ejemplo de implementacion del algoritmo
BSAS en Python:

© RA-MA Capitulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 211

Cédigo 4.1 Algoritmo BSAS en Python

import numpy as np
import matplotlib.pyplot as plt

def BSAS(X, th, g, orden):
Reordenar datos si se proporciona un orden especifico
1, N = X.shape
if len(order) ==
X = X[:,orden]
Inicializacidn
n_clust = 1
bel = np.zeros(N,dtype=int)
bel[@] = n_clust

matriz de centroides (cada columna es un cluster)
m = X[:,[0]]
for i in range(1, N):
m2 = m.shape[1]
Calcular distancias a los centroides existentes
distances = np.sqrt(np.sum((m - X[:,i].reshape(-1,1))**2,
axis=0))
sl = np.min(distances)
s2 = np.argmin(distances)
if s1 > th and n_clust < q:
n_clust += 1
bel[i] = n_clust
m = np.hstack((m, X[:,[1i]]))
else:
bel[i] = s2 + 1
count = np.sum(bel[:i+1] == bel[i])
m[:, s2] = ((count - 1) * m[:,s2] + X[:,i]) / count

return bel, m

212 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORIA Y PRACTICAS CON PYTHON © RA-MA

Ejemplo 4.1:

Utilizar el algoritmo BSAS para hacer un agrupamiento sobre un conjunto
de datos aleatorio, el umbral de distancia maxima para entrar al grupo th serd de 4 y
el nimero maximo de grupos permitido ¢ sera de 5.

Solucioén:

Cédigo 4.2 Ejemplo de Uso de algoritmo BSAS en Python

#o----------- Generacidén de datos aleatorios -----------
np.random.seed(0)

clusterl = np.random.randn(2,20) + np.array([[5],[5]11)
cluster2 = np.random.randn(2, 20) + np.array([[0],[0]])
cluster3 = np.random.randn(2, 20) + np.array([[5],[-5]1])

X = np.hstack((clusterl,cluster2,cluster3))
Mezclar el orden
order = np.random.permutation(X.shape[1])

#o--mmmm - Ejecutar BSAS -----------

theta = 4.0 # Umbral de distancia

qR=N5 # Numero maximo de clusters
labels,centroids = BSAS(X,theta,q,order)
- - Visualizacién -----------

plt.figure(figsize=(8, 6))
for k in np.unique(labels):
idx = np.where(labels == k)
plt.scatter(X[0,idx],X[1,idx],label=f’Cluster{k}”’)
plt.scatter(centroids[@,:],centroids[1,:],c="black’,marker="x",\
s=100, label="Centroides”’)
plt.title(“‘Agrupamiento con BSAS’)
plt.xlabel(X1’)
plt.ylabel(“X2’)
plt.legend()
plt.grid(True)
plt.show()

Es necesario aclarar que para el funcionamiento de este codigo debe incluirse
la definicion del algoritmo BSAS mostrada en el codigo 4.1, ademas de incluir los
modulos de numpy y matplot lib en el intérprete que desee utilizarse. Como resultado
el algoritmo 4.2 arrojara lo siguiente:

© RA-MA Capitulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 213

Agrupamiento con BSAS

® Clusterl ®
® Cluster2 ® o .
61+ @ Cluster3 L] ° o
¥ Centroides X o L]
° .6
4 o .
[]
L]
L]
2_
L]
]
s 04 I--II . ®
L] ®
6 ° 0%
.
_2 4 . e
-« ® L] L
»
—4 L 6. >6< ® @
L] ® °
e L
6 e o ©
T T T T T
-2 0 2 4 6

X1

Figura 4.2 Resultado de Agrupacién de algoritmo BSAS

Como se puede observar, el algoritmo detecta 3 grupos posibles marcando el
centroide de cada uno de ellos con una “x”.

4.5.3 Algoritmo K-medias (K-means)

En esta seccion sera presentado uno de los algoritmos de agrupamiento
mas ampliamente utilizados en una gran variedad de aplicaciones de inteligencia
computacional, el algoritmo K-medias mejor conocido por su nombre en inglés
como K-means.

Este algoritmo divide un conjunto de vectores x=(x,,x,,...,X,) €n m grupos
G=(g,g, ---.g,).- La medida de representacion de los grupos en el algoritmo
K-medias esta definida por el centroide c,,i=1,2, ...,m el cual se calcula minimizando
una funcidn de costo en la cual se asume como métrica de disimilitud la distancia
euclidiana. Esta funcion de costo esta definida de la siguiente manera:

J=Y Y el (4.26)

i=lk ,x €G;

214 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORIA Y PRACTICAS CON PYTHON © RA-MA

Siendo J la funcion de costo a minimizar atribuida al grupo g,. De acuerdo
con la ecuacion 4.26, el valor de J depende exclusivamente de la distribucion espacial
de los vectores pertenecientes a g, y de la posicion de su centroide c,.

La separacion de los vectores de caracteristicas en cada grupo esta definida
por un factor u,;. Este factor, determina de forma binaria la correspondencia de un
vector con un grupo g, de la siguiente manera:

1, xeg,
u, . = (4.27)
10, x 2g
Siendo asi que agregando este factor a la ecuacion 4.26 esta se puede escribir
como:
=3 2wy, Flx el (4.28)
i=lk,x €G;

Representando esto la suma de las distancias al cuadrado de cada vector x,
perteneciente al grupo g..

Teniendo todo esto en cuenta, el problema de agrupamiento de datos se
puede resolver al encontrar los valores de u;; y ¢, que minimicen J. Este método
minimiza J a través de un proceso iterativo que se divide en dos fases:

Primera Fase

En esta fase se optimiza J respecto a u,, manteniendo fijas las posiciones de
los centroides c, los cuales en la primera iteracion son colocados de manera aleatoria,
para esto se aprovecha que el valor de J varia linealmente respecto a los valores de u; .
Dado que cada término u;; involucra un grupo independiente y diferente g,, es posible
encontrar de manera separada cada termino u, .. Con esto en cuenta se elijen los valores
deu, =1 al centroide que tenga la minima distancia con el vector de caracteristicas que
esta siendo analizado, es decir, se asigna el vector de caracteristicas x; al grupo mas
cercano. Esto se puede formular matematicamente de la siguiente manera:

. . 2
5 :{ I, i argmmnxj G|l (4.29)
O, cualquler otro caso

Segunda Fase

En esta fase, se determina el valor de los centroides manteniendo fijos los
valores de u;; previamente obtenidos. Dado que los valores de la funcion objetivo
varian de forma cuadratica respecto al valor de los centroides c,., el valor de J se puede

© RA-MA Capitulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 215

minimizar igualando a 0 el valor de la derivada de J con respecto a c,. Obteniendo de
esto la siguiente expresion:

25w, *(x; —¢,) =0 (4.30)
j=1
A partir de la cual se puede obtener el valor de los centroides de la siguiente

manera:
" *
Z,,-J‘f,j Xj
(==L 4.31)

Z j=lui’f

Una vez completada la segunda etapa, el proceso se repite iterativamente
hasta que no haya cambios en los valores de los centroides. En la figura 4.3 se puede
seguir el paso a paso del algoritmo K-medias a manera de diagrama de flujo.

Inicializar c; de forma
aleatoria

Fasel Fase?2

Figura 4.3 Diagrama de flujo del algoritmo K-medias, en él, |a variable n es el nimero de vectores
de caracteristicas a ser analizados y m es el ndmero de grupos definido por el usuario

216 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORIA Y PRACTICAS CON PYTHON © RA-MA

Ejemplo 4.2

A continuacion, se muestra un ejemplo de implementacion del algoritmo
K-medias en Python utilizado para separar el siguiente conjunto de datos en 4 grupos:

Datos originales

T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 L5 2.0
X

Figura 4.4 Conjunto de Datos a analizar por el algoritmo

Solucién:

Cédigo 4.3 Implementacion del Algoritmo K-medias para agrupar un
conjunto de datos

import numpy as np

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from scipy.io import arff

import pandas as pd

Leer el archivo ARFF

© RA-MA Capitulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 217

data, meta = arff.loadarff(‘shapes.arff’)

Convertir a DataFrame para manejo mas comodo
df = pd.DataFrame(data)

Asegurarse de que los datos estén en formato numérico (por si hay
bytes)
df[x’]
df[‘y’] = pd.to_numeric(df[‘y’], errors=’coerce’)

pd.to_numeric(df[‘x’], errors=’coerce’)

Extraer variables
df[“x’].values
df[‘y’].values

<
I

Visualizar datos originales
plt.figure()

plt.plot(x, y, ‘0o’)
plt.title(‘Datos originales’)
plt.xlabel(x’)
plt.ylabel(‘y’)
plt.grid(True)

plt.show()

Preparar datos para clustering
D = np.column_stack((x, y))

Aplicar K-means con 4 clusters
kmeans = KMeans(n_clusters=4, random_state=0)
idx = kmeans.fit_predict(D)

Visualizacidén de resultados
plt.figure()
colors = [‘g?, ‘r’, k’, ‘y’]
for i in range(4):
cluster_points = D[idx == i]
plt.plot(cluster_points[:, @], cluster_points[:, 1], ‘o’ +
colors[i],\
label=f’Cluster {i+1}’)

Graficar los centroides

218 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORIA Y PRACTICAS CON PYTHON © RA-MA

centroids = kmeans.cluster_centers_
plt.scatter(centroids[:,0],centroids[:,1],s=150,c="blue’ ,marker="X",\
label=’Centroides”’)

plt.title(‘Resultados de K-means’)
plt.xlabel(‘x’)

plt.ylabel(‘y’)

plt.legend()

plt.grid(True)

plt.show()
Resultado:
Resultados de K-means
2 -
[4
14 hd o8
® Clusterl
® Cluster2
= 07 ® Cluster3
Cluster 4
* Centroides
17 iv
—2 - ‘

T T T
=15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x

Figura 4.5 Resultado de Agrupamiento con algoritmo K-medias

Como se puede apreciar, el algoritmo separa el conjunto de datos de acuerdo
con la distribucion espacial de las nubes de datos asignandolos a su centroide mas
cercano. Es necesario aclarar que para que el codigo 4.3 funcione se necesita tener el
archivo “shapes.arff” en la misma carpeta que se ejecute el cddigo. Este archivo sera
afiadido en el material complementario de la pagina web del libro.

© RA-MA Capitulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 219

4.5.4 Algoritmos de Agrupamiento Jerarquico

En esta seccion seran analizados los algoritmos de agrupamiento jerarquico.
Estos algoritmos realizan una serie de particiones sobre el conjunto de datos de tal
manera que permite que sean visualizadas en un diagrama de arbol comunmente
conocido como dendrograma. Como se puede apreciar en la Figura 4.6, esta es una
estructura configurada de tal manera en que cada elemento D del nivel mas bajo del
arbol representan un grupo individual, mientras que el elemento raiz D, del arbol
representa el grupo formado por la union de todos los vectores de caracteristicas a
analizar. Tomando en cuenta estas consideraciones, en los niveles intermedios del
arbol es posible encontrar diversas agrupaciones de los vectores de caracteristicas
dependiendo de las distancias relativas entre ellos.

{A,B,C,D,E}

I
{BUC}luU{D UE}
I — |
{BuUC} {D U E}

R |
4 [B1] [] [[] [E]

Figura 4.6 Ejemplo de Dendrograma

Este tipo de algoritmos se pueden dividir en dos enfoques principales: los
métodos de aglomeracion, los cuales empiezan por definir para cada uno de los
n elementos a agrupar un grupo individual. Teniendo de esta manera n grupos v,
con ellos, el algoritmo realiza un proceso iterativo de union de los grupos que de
acuerdo con un criterio de similitud tienden a estar mas relacionados. Por la otra
parte, los procesos de agrupamiento jerarquico divisivos realizan la tarea opuesta,
es decir, el algoritmo inicia con un grupo principal que contiene todos los vectores
de caracteristicas a analizar y lo va separando en grupos que de acuerdo con un
criterio de disimilitud son diferentes del grupo. Debido al caracter introductorio de
este libro, en esta seccion se abordara unicamente los algoritmos aglomerativos que
son ampliamente mas populares.

Formalmente se puede definir el agrupamiento jerarquico de la siguiente
manera: dado un conjunto de datos D={x,x,,....x,} para xi€ER?, el objetivo de

220 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORIA Y PRACTICAS CON PYTHON © RA-MA

un algoritmo de agrupacion jerarquica es particionar el conjunto D en m grupos
G={g,g,....g,}. Se dice que un conjunto de grupos A={a,a,,....a,} estd
anidado en otro conjunto B={b,,b,,...,b,} unicamente si s>¢ de manera que cada
grupo a,€A existe un grupo b,eB para el que a,cb, Durante el agrupamiento
aglomerativo, se produce una serie de particiones anidadas p,,p,,...,p, iniciando
con p,={(x)).(x,),....,(x,)} en la que cada dato pertenece a un grupo individual.
Después de esto, el algoritmo realizara un proceso iterativo hasta terminar con un
grupo que incluya todo el conjunto de datos a analizar p,={(x,,x,, ...,x,)}. Tomando
en cuenta estas definiciones es posible decir que la particion p, se encuentra
anidada en la particion p, .,.

Al comienzo de la ejecucion de los métodos de agrupamiento aglomerativos,
la primera particion considera a cada uno de los vectores de caracteristicas como un
grupo individual. Después, con el avance del algoritmo, este ird uniendo los grupos
de acuerdo con la similitud que presenten con base en una métrica dada. Dicho
esto, suponiendo que iniciando con la particion p,={g..g,,....g,} se presentan al
algoritmo dos grupos g, y g, a ser analizados, al ser estos grupos los que presentan
mayor similitud, el algoritmo tomara la decision de fusionarlos en uno solo, dando
como resultado g,,,=g,ug, y formando una particiéon nueva p,,,={g,, g,g,} en
la que los grupos g, y g, son sustituidos por la union de estos g, ,. De esta manera
el proceso se ejecuta iterativamente hasta que se tiene la particion con un tnico
grupo que incluye a todos los vectores de caracteristicas. Tomando en cuenta que
durante cada iteracion el numero de grupos se ve reducido en uno, el nimero de
iteraciones totales del algoritmo sera reducido a n pasos. Aunque es posible dejar
un criterio de paro establecido para que el algoritmo se detenga en el nimero de
grupos que de acuerdo con la separacion natural de los pasos quede establecido.
El proceso de un algoritmo se puede resumir de la siguiente manera:

L Peig ={x}x eD}
2. o (xl.,xj)
Repetir
Encontrar(argmax(5 (g,-, g,))
5. 8i;~8VE;
6. Hasta |P|=m

Algoritmo 4.1 Pseudocddigo Procedimiento Algoritmo de Agrupacion Jerarquico

© RA-MA Capitulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING) 221

Ejemplo 4.3

A continuacion, se muestra un ejemplo de implementacion del algoritmo de
agrupamiento aglomerativo en Python utilizado para separar el siguiente conjunto
de datos:

Conjunto de Datos

151 o® e o°
1.0 - »

0.5 e

0.0)

]

—0.5 | o
-1.0 A ® .

~1.5 ® o

2.0 T T T T T T
=3 -2 -1 0 1 2 3

Figura 4.7 Conjunto de datos a analizar por algoritmo aglomerativo

Cédigo 4.4 Implementacién Algoritmo de Agrupamiento Aglomerativo en
Python

Import numpy as np

from scipy.cluster.hierarchy import linkage, dendrogram, fcluster
from scipy.spatial.distance import pdist

import matplotlib.pyplot as plt

from sklearn.mixture import GaussianMixture

Parametros de las distribuciones
muD = np.array([[-2.1, 1.28], [-1.2, -1.40], [2.64, ©.19]])
sigmaD = np.array([

[[@.59, @], [0, @.11]],

222 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORIA Y PRACTICAS CON PYTHON © RA-MA

[[0.49, @], [0, 0.11]],
[[0.05, 0], [0, 0.21]]

1
p = np.ones(3) / 3

Generacidén de datos usando mezcla gaussiana

gmm = GaussianMixture(n_components=3, covariance_type=’full”’)
gmm.weights_ = p

gmm.means_ = muD

gmm.covariances_ = sigmaD

gmm.precisions_cholesky = np.linalg.cholesky(np.linalg.inv(sigmaD))
X, _ = gmm.sample(40)

Cadlculo de distancias y clustering jerarquico
pdist(X)
Z = linkage(Y, method=’ward’) # MATLAB usa ‘ward’ por defecto

Dendrograma
plt.figure()
dendrogram(Zz)
plt.title(“Dendrograma”)
plt.show()

Clasificacién en 3 grupos
T = fcluster(Z, 3, criterion=’maxclust’)

Indices de cada grupo

Indicel = np.where(T == 1)[0]
Indice2 = np.where(T == 2)[0]
Indice3 = np.where(T == 3)[0]

Grafico por grupo

plt.figure()

plt.plot(X[Indicel, @], X[Indicel, 1], ‘o’, label=’Cluster 1’)
plt.plot(X[Indice2, @], X[Indice2, 1], ‘x’, label=’Cluster 2’)
plt.plot(X[Indice3, @], X[Indice3, 1], ‘D’, label=’Cluster 3’)
plt.title(“Grupos separados™)

plt.legend()

plt.show()

© RA-MA Capitulo 4. ALGORITMOS DE AGRUPAMIENTO (CLUSTERING)

223

Resultado:
Grupos separados
* ® Clusterl
151 ¢ ’Q ” * » Cluster 2
.0 Py * L J & Cluster 3
1.0 4 L 2 * o
o
0.5 L Wi
0.0 1 h
@
[e]
—0.5 1 e
—1.0 5 X
x X
—1.5 - * X
x
—2.0 A .
3 P I 0 1 2 3

Figura 4.8 Conjunto de datos separado después de ser analizado
por el algoritmo de agrupamiento aglomerativo

Dendrograma

17.5 4

15.0 A

12.5 4

10.0 ~

7.5 4

5.0 A

2.5 A

J;Qamfrﬁﬁgﬁmf;m

PRPPRFPPPAPDIPPPAPDPYBPNPAP > 2 2 AQ VPG B CH0 VP

0.0

Figura 4.9 Dendrograma Resultante después de analizar el
conjunto de datos con algoritmo aglomerativo

224 INTELIGENCIA ARTIFICIAL Y COMPUTACIONAL. TEORIA Y PRACTICAS CON PYTHON © RA-MA

4.6 REFERENCIAS

[1] R. Xu and D. Wunsch, “A survey of clustering algorithms,” IEEE Transactions
on Neural Networks, vol. 16, no. 3, pp. 645—678, May 2005.

[2] D. Miillner, “Modern hierarchical, agglomerative clustering algorithms,” arXiv
preprint arXiv:1109.2378, Sep. 2011.

>

[3] N. Monath, et al., “Scalable Hierarchical Agglomerative Clustering,” arXiv

preprint arXiv:2010.11821, Oct. 2020.

[4] F. Murtagh and P. Legendre, “Ward’s Hierarchical Clustering Method: Clustering
Criterion and Agglomerative Algorithm,” arXiv preprint arXiv:1111.6285, Nov.
2011.

[5] S. Dudoit and J. Fridlyand, “Bagging to improve the accuracy of a clustering
procedure,” Bioinformatics, vol. 19, no. 9, pp. 1090-1096, Sep. 2003.

[6] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A Comparative Study of Efficient
Initialization Methods for the k-Means Clustering Algorithm,” arXiv preprint
arXiv:1209.1960, 2012.

[7] R. A. Fisher, “Clustering Algorithms [: Sequential Algorithms,” in Pattern
Recognition, Academic Press, 2007, pp. 331-344.

[8] E. A. Reyes and M. J. del Jesus, “A closer look into sequential clustering
algorithms,” International Journal of Intelligent Computing and Applications,
vol. 6, no. 2, pp. 103—-121, 2014.

[9] T. Zhang, “An overview of clustering methods with guidelines for application,”
Data Science Reports, vol. 45, pp. 123—-138, 2023.

[10] Wikipedia contributors, “Cluster analysis,” Wikipedia, The Free Encyclopedia,
2024. [Online]. Available: https://en.wikipedia.org/wiki/Cluster analysis

