(ADGG076PO) SPSS: Aplicación y análisis estadístico
Pablo Valderrey Sanz
El objetivo de este libro es que el lector aprenda los fundamentos de la aplicación SPSS y dotar al alumno de los recursos prácticos necesarios para llevar a cabo un análisis de datos: definición y entrada, modificación y análisis y presentación de los datos.
- Escritor
- Pablo Valderrey Sanz
- Colección
- Formación en el Empleo (Especialidades Formativas)
- Materia
- Software de matemáticas y estadísticas
- Idioma
- Castellano
- EAN
- 9788418971549
- ISBN
- 978-84-18971-54-9
- Depósito legal
- M-34417-2021
- Páginas
- 464
- Ancho
- 17 cm
- Alto
- 24 cm
- Peso
- 768 g
- Edición
- 1
- Fecha publicación
- 23-12-2021
588,18 MX$28,84 US$
Índice de contenido
CAPÍTULO 1. EL PROCESO DE EXTRACCIÓN DEL CONOCIMIENTO A TRAVÉS DE SPSS 17
1.1 EXTRACCIÓN DEL CONOCIMIENTO
1.2 TÉCNICAS DE ANÁLISIS DE DATOS
1.3 SPSS 17 Y EL PROCESO DE EXTRACCIÓN DEL CONOCIMIENTO. PRIMEROS PASOS
1.3.1 Instalación de SPSS 17
1.3.2 Comenzando con SPSS 17
1.3.3 Procedimientos para extracción del conocimiento
1.3.4 Editir de datos. Casos y variables
1.3.5 Editor de sintaxis
1.3.6 Visor de SPSS
1.3.7 Editor de gráficos de SPSS
1.3.8 Ayuda en SPSS 17
CAPÍTULO 2. FASE DE SELECCIÓN EN EL PROCESO DE
EXTRACCIÓN DEL CONOCIMIENTO
2.1 FUENTES DE DATOS
2.1.1 Leer y guardar archivos de datos
2.1.2 Importación de archivos de hoja de cálculo
2.1.3 Importación de archivos de base de datos
2.1.4 Importación de archivos de texto ASCII
2.2 SELECCIÓN DE CASOS Y VARIABLES EN SPSS
2.2.1 Selección de casos mediante criterios condicionales
2.2.2 Selección de fechas, horas y filas
2.2.3 Selección de una muestra aleatoria simple
2.2.4 Operadores para la selección de casos y variables en SPSS
2.3 SELECCIÓN DE MUESTRAS MEDIANTE MÉTODOS AVANZADOS DE MUESTREO
2.3.1 Asistente de muestreo de SPSS Muestreo estratificado
2.3.2 Asistente de muestreo de SPSS. Muestreo de conglomerados monoetápico y polietápico
CAPÍTULO 3. FASE DE EXPLORACIÓN EN EL PROCESO DE EXTRACCIÓN DEL CONOCIMIENTO
3.1 EXPLORACIÓN DE LOS DATOS
3.2 ANÁLISIS EXPLORATORIO FORMAL DE LOS DATOS CON SPSS
3.2.1 Procedimiento Explorar
3.2.2 Contraste de aleatoriedad. Procedimiento Prueba de rachas
3.2.3 Contraste de ajuste a una distribución de frecuencias. Procedimiento Prueba de Kolmogorov-Smirnov
3.3 ANÁLISIS EXPLORATORIO Y VISUAL DE LOS DATOS
3.4 TIPOS DE GRÁFICOS
3.4.1 Generador de gráficos
3.4.2 Histogramas
3.4.3 Gráficos de caja y bigotes
3.4.4 Gráficos de dispersión
3.5 GRÁFICOS INTERACTIVOS DINÁMICOS DE ANÁLISIS EXPLORATORIO DE DATOS
3.5.1 Creación interactiva de gráficos a partir de tablas
3.5.2 Gráficos interactivos de caja y bigotes
3.5.3 Histogramas interactivos
3.5.4 Diagramas interactivos de dispersión
3.6 CORRELACIONES EN LA INFORMACIÓN
3.6.1 Análisis de correlaciones de variables numéricas en SPSS
3.5.2 Análisis de correlaciones de variables carácter en SPSS
CAPÍTULO 4. FASE DE LIMPIEZA EN EL PROCESO DE EXTRACCIÓN DEL CONOCIMIENTO.
4.1 INTRODUCCIÓN
4.2 ANÁLISIS Y DETECCIÓN DE VALORES ATÍPICOS
4.2.1 Detección de valores atípicos en SPSS mediante gráficos de control
4.2.2 Detección de casos atípicos en SPSS mediante gráficos de caja y bigotes
4.3 ANÁLISIS DE LOS DATOS MISSING
4.3.1 Tratamiento de los datos ausentes. Imputación
4.3.2 Tratamiento de los datos ausentes con SPSS
4.4 IMPUTACIÓN MÚLTIPLE CON SPSS 17
4.4.1 El procedimiento Analizar patrones
4.4.2 El procedimiento Imputar valores de datos perdidos
4.5 TRATAMIENTO DE LOS DATOS ATÍPICOS Y AUSENTES
SIMULTÁNEAMENTE CON SPSS 17
CAPÍTULO 5. FASE DE TRANSFORMACIÓN EN EL PROCESO DE EXTRACCIÓN DEL CONOCIMIENTO
5.1 TRANSFORMACIÓN DE DATOS MEDIANTE TÉCNICAS DE REDUCCIÓN DE LA DIMENSIÓN
5.2 ANÁLISIS FACTORIAL Y COMPONENTES PRINCIPALES
5.2.1 Contrastes en el modelo factorial
5.2.2 Rotación de los factores
5.3.3 Interpretación gráfica de los factores y puntuaciones factoriales
5.3 ANÁLISIS FACTORIAL Y COMPONENTES PRINCIPALES EN SPSS
5.4 ANÁLISIS DE CORRESPONDENCIAS
5.4.1 SPSS y el análisis de correspondencias simple
5.4.2 SPSS y el análisis de correspondencias múltiple
5.5 ESCALAMIENTO MULTIDIMENSIONAL
5.5.1 Modelo INDSCAL con SPSS
5.5.2 Modelo PROXCAL con SPSS
5.6 MATCHING CON SPSS. TRANSPONER, FUSIONAR, AGREGAR, SEGMENTAR Y RECODIFICAR
5.7 REESTRUCTURAR ARCHIVOS DE DATOS
5.8 DISCRETIZAR VARIABLES
5.9 GENERAR NUEVAS VARIABLES
CAPÍTULO 6. FASE DE ANÁLISIS DE DATOS EN EL PROCESO DE EXTRACCIÓN DEL CONOCIMIENTO. TÉCNICAS PREDICTIVAS: MODELOS DE REGRESIÓN Y SERIES TEMPORALES
6.1 LA FASE DE ANÁLISIS DE DATOS
6.2 CLASIFICACIÓN DE LAS TÉCNICAS DE LA DEPENDENCIA
6.3 MODELO DE REGRESIÓN LINEAL MÚLTIPLE
6.3.1 Estimación del modelo, contrastes e intervalos de confianza
6.3.2 El análisis de los residuos
6.3.3 Autocorrelación, multicolinealidad y heteroscedasticidad
6.3.4 SPSS y la regresión lineal
6.3.5 Estimación ponderada y homoscedasticidad en SPSS
6.3.6 SPSS y mínimos cuadrados en dos fases. Variables instrumentales
6.3.7 SPSS y la Regresión ordinal
6.3.8 SPSS y la Regresión mediante escalamiento óptimo
6.4 MODELOS DE REGRESIÓN NO LINEALES
6.4.1 SPSS y la estimación no lineal. Estimación curvilínea
6.4.2 SPSS y la estimación no lineal general
6.5 INTRODUCCIÓN A LAS SERIES TEMPORALES
6.6 TENDENCIA DE UNA SERIE TEMPORAL
6.7 SPSS Y LA TENDENCIA DE LAS SERIES TEMPORALES
6.8 VARIACIONES ESTACIONALES EN UNA SERIE TEMPORAL
6.9 SPSS Y LAS VARICIONES ESTACIONALES
6.10 VARIACIONES CÍCLICAS EN UNA SERIE TEMPORAL
6.11 SPSS Y LAS VARICIONES CÍCLICAS Y ESTACIONALES: PERIODOGRAMA Y DENSIDAD ESPECTRAL
6.12 METODOLOGÍA DE BOX-JENKINS
6.12.1 Fases del modelado y tipología de modelos ARIMA(p,d,q)
6.12.2 Modelos AR(p9, MA(q), ARMA(p,q) y ARIMA(p,d,q)
6.12.3 Modelos de la función de transferencia
6.12.4 Identificación del modelo
6.12.5 Modelos ARIMA(p,d,q)(P,D,Q) estacionales
6.12.6 Estimación de modelos ARIMA(p,d,q)(P,D,Q)
6.12.7 Diagnóstico, validación o contraste de modelos ARIMA(p,d,q)(P,D,Q)
6.12.8 Predicción en modelos ARIMA(p,d,q)(P,D,Q)
6.13 SPSS 17 Y LA METODOLOGÍA DE BOX-JENKINS
6.13.1 El módulo automático de predicción de SPSS 17
CAPÍTULO 7. FASE DE ANÁLISIS DE DATOS EN EL PROCESO DE EXTRACCIÓN DEL CONOCIMIENTO. MODELOS ANOVA, ANCOVA, MANOVA, MANCOVA, GLM, MIXTOS Y DATOS DE PANEL
7.1 ANÁLISIS DE LA VARIANZA SIMPLE ANOVA
7.2 ANÁLISIS DE LA COVARIANZA SIMPLE ANCOVA
7.3 MODELO DE REGRESIÓN LINEAL GENERAL (GLM)
7.4 MODELOS LINEALES MIXTOS
7.5 ANOVA DE UN FACTOR CON SPSS
7.6 REGRESIÓN, ANOVA Y ANCOVA UNIVARIANTES DE UNO Y VARIOS FACTORES CON MLG EN SPS
Libros relacionados
Matemáticas con GeoGebra
Fundamentos de Matemáticas. Ejercicios resueltos con Maxima
Matemática financiera para el nuevo Plan General de Contabilidad (2ª Edición)
Matemáticas con Microsoft Excel (2ª Edición)
SPSS 17. Extracción del conocimiento a partir del AA.DD
Cálculo Simbólico y Gráfico con MAPLE
SCILAB. Programación y Simulación
Geogebra
Algoritmos evolutivos: un enfoque práctico
Matemática financiera para el nuevo Plan General de Contabilidad