
In Pedro Sousa and Jürgen Ebert, editors, Proc. 5th European Conference on Software Maintenance and Reengineering. IEEE, Los Alamitos, 2001

Capturing Dynamic Program Behaviour with UML Collaboratio n Diagrams

Ralf Kollmann & Martin Gogolla
University of Bremen

Department of Computer Science
PO Box 330440, D-28334 Bremenfkollmannjgogollag@informatik.uni-bremen.de

Abstract

The UML provides means to specify both static and
dynamic aspects of object-oriented software systems and
can be used to assist in all phases of a software devel-
opment process. With growing support by CASE tools,
its applications become more and more widespread. In
addition to the automatic generation of class code from
diagrams, the recovery of static structure from source code
has become common, too. In this paper however, we focus
on the extraction of behavioural information from program
code. We introduce a restricted meta model for Java
code and present a new approach to extract the required
data, which will then be rendered as UML collaboration
diagrams.

Keywords: UML collaboration diagram, re-
documentation, reverse engineering, Java, dynamic
behaviour, meta model.

1 Introduction

The Unified Modeling Language (UML, [14] [15] [17])
provides means to describe static and dynamic aspects of
object-oriented software systems with a graphical notation,
which is founded on a semi-formal basis. It allows speci-
fication on different levels of detail (e.g. design vs. imple-
mentation) and therefore suits well to assist in all phases of
software development processes. While many CASE tools
support the UML today, some also provide a bridge between
design and implementation through code generators. The
most common deployment is the use of class diagrams to
specify the static structure of a program which is then con-
verted into a number of class stubs in a given programming
language.

In [5], it is shown that it is also possible to adapt this
procedure to dynamic behaviour. The authors present an
approach for the transformation of collaboration diagrams

into Java code. Diagrams are used to graphically specify
the functional behaviour of objects in terms of the interac-
tions between them. For each object, the collaboration con-
text is shown and also, the methods called at other objects
are displayed in temporal order of their invocation. The di-
agrams are used as input for a set of transformation rules,
from which Java code segments can be derived.

While the application of UML in CASE tools assist-
ing forward engineering processes is rather wide-spread
concerning modeling of static structure, some tools like
Rose [16] and Together [20] additionally provide reverse
engineering facilities in the same field. From existing
source code provided as input, UML class diagrams can
be created which describe the static aspects of the soft-
ware. Further research on this subject involves lifting
these implementation-view class diagrams to a more ab-
stract level to allow deployment of the more advanced fea-
tures of UML [6].

Concerning forward engineering, modeling and code
generation of dynamic behaviour are also supported by
some CASE tools, like e.g. Rhapsody [9] and State-
mate [10]. Both use UML statecharts as specification no-
tation. In an effort to realize roundtrip engineering of static
as well as dynamic program structures, the Fujaba environ-
ment [21] combines both forward and reverse engineering
techniques. It is based on UML diagrams andstory driven
modeling(SDM) [11].

In this paper, we present a UML-based approach to ex-
tract information about the dynamic behaviour of programs
and show additionally, how UML collaboration diagrams
can be used for graphical representation of the results. To
our knowledge, reverse engineneering of Java with UML
collaboration diagrams has not been studied before. Our
approach is meant to yield a partial program-flow analysis.
As [5] elaborates, collaboration diagrams are suitable as a
basis for automatic code generation for operations. This di-
agram kind allows to describe the interaction of objects by
means of messages exchanged between them, as well as the
collaboration context, i.e. the structural information upon
which the interaction relies. However, it is not possible to



specify all dynamic aspects of a given system. Therefore,
we focus on the aforementioned two kinds of information,
namely object interaction and collaboration context.

To give a better understanding on how we intend to use
collaboration diagrams for showing the dynamic behaviour
of Java programs, we present a small example that shows
two simple classes exchanging messages.

public class HelloWorld{

public HelloWorld(){
hello();

}

public void hello(){
System.out.println

("Hello World");
}

}

The focus of the collaboration diagram in fig. 1 is on
methodhello() from classHelloWorld. The “user”
stereotype icon on the left represents an external caller of
the method who is not relevant here. The call from the
user shows always the examined method and points to the
class declaring it. The only action in methodhello() is
a call toprintln() from classPrintStream, via the
static attributeout from classSystem (this is the usual
way of callingprintln() in Java). The collaboration
context shows therefore instances of classesHelloWorld
andPrintStream as well as a link between both with
the attribute name on it. The interaction encompasses the
call to hello() from an external user and the call to
println() from HelloWorld to PrintStream.

1:println()

:PrintStream

System.out

hello()

:HelloWorld

Figure 1. A Collaboration Diagram for Hel-
loWorld

Our approach relies on the UML meta model and pro-
poses a restricted Java meta model. As far as we know a
meta model in the style of the UML meta model has not
been yet proposed for Java. However, as the meta models
for OMT in [4] and Booch in [19] show, UML was by far

not the first object modeling technique with a meta model
as a formal foundation.

In the field of reverse engineering, related work encom-
passes [18], which describes the use of high-level petri nets
to reverse engineer Java applets and [3], which concentrates
on parametrized Java types. [2] analyses the UML with
a focus on round-trip and reverse engineering capabilities,
while [1] employs UML for the reverse engineering of web
sites. Lastly, the results of this paper are influenced by our
earlier work on properties of UML class diagrams [7].

The following sections of this paper are structured as fol-
lows. In section 2, we will introduce a meta model for parts
of Java, which will allow us to bring the necessary informa-
tion from the Java code into a canonical form, which in turn
enables us to extract information about the static structure as
well as the object interaction. Based on the mapping rules
introduced in section 3, we present a recursive algorithm
for the processing of the information from an instance of
the meta model in section 4 and go through an exemplary
application in section 5. We close with considerations about
questions of applicability and a final conclusion.

2 Java Meta Model

To analyze programs written in Java, it is at first neces-
sary to know their structural composition (a complete de-
scription of the language can be found in the Java Language
Specification [8]). A specification of the program structure
is not only required for the mere parsing of the program
code (in Java, this may be source code or byte code). In
our approach, it is also important for the following step of
processing the data: In the given scope of representing ex-
isting program structures with UML diagrams, we decided
to take a similar approach for our specification of the Java
language. In the fashion of the UML document [13], a meta
model is used for this purpose. The meta model is based
on information from the Java Language Specification and
focuses on those parts that are necessary for the creation of
collaboration diagrams. The data extracted from the pro-
gram code may be represented as an instance of the meta
model, which will be used for the generation of the final
collaboration diagrams.

Since Java has - as can be expected from an object-
oriented language - a certain level of complexity, it is clear
that there are certain parts of the language description that
are irrelevant with respect to the goals headed for in this pa-
per: There is no representation for them in our meta model.
The meta model presented here should contain only those
parts that are required for the rendering of collaboration
context and interaction between objects. Two UML class
diagrams suffice to capture these: diagram “Types” (fig. 2)
shows the coherence between types and values, their spe-
cializations as well as the classes needed to interconnect



both. Thereby, the relation between classes and objects is
modeled, too. The left generalization hierarchy shows val-
ues specialized to primitive and reference values which are
again specialized to null references. The right generaliza-
tion hierarchy displays Java types with specializations to
primitive and reference types which again are specialized
to interface, class and array types. The connection between
these two hierarchies is established by the class Variable and
the class JavaObject: Variables hold values and possess a
declared type; JavaObjects are pointed to by ReferenceVal-
ues and also possess a type. Note that the declared type of
a Variable is not necessarily the same as the type of the Ob-
ject: each Object is an instance of a Class that must be com-
patible with the declared type of the Variable which holds
the reference pointing to the Object. The declared type of a
Variable is known at compile-time, while the dynamic type
of the Object (i.e. the Class that the Object belongs to) can
only be determined at run-time.

The second diagram “Invocations” (fig. 3) describes
those parts of Java method structures which are necessary
for the representation of the relations between classes and
methods as well as the invocation of methods by concrete
objects. Classes and also methods may have references to
objects and additionally, in methods, the invocation of other
methods on objects can be specified. This requires the meta
model to provide associations between these different con-
ceptual entities. An invocation refers to exactly one method,
has many parameter variables, has a return value variable
and an owner being again a variable. A method has formal
parameters, a result type, and is owned by a class. Which
method is actually associated to the invocation depends on
the dynamic type of its object.

For some of the classes from the meta model, constraints
exist which cannot be expressed by means of the class di-
agram notation itself. Therefore, it is necessary to refine
the meta model with additional constraints, which are given
in OCL [12] notation. The main issue of these is to en-
sure consistency between values and types. The following
set of OCL expressions is an exemplary excerpt from the
complete list that would be necessary for translation of Java
programs into collaboration diagrams. It shows a selection
of the basic constraints which are required for the example
in section 5.

Array

1. The type of an Array must always be ArrayType.
context Array inv:
self.type.oclIsKindOf(ArrayType)

ClassInstance

1. The type of a ClassInstance must always be
ClassType.
context ClassInstance inv:
self.type.oclIsKindOf(ClassType)

ClassType

1. The name of theinstance field, referring to the
object created when calling the classes’ constructor, is
always"this".
context ClassType inv:
self.instance.name="this"

Variable

1. A variable holding a primitive value always has a
primitive type.
context Variable inv:
self.value.oclIsKindOf(PrimitiveValue)
implies
self.type.oclIsKindOf(PrimitiveType)

2. A variable holding a reference value always has a
reference type.
context Variable inv:
self.value.oclIsKindOf(ReferenceValue)
implies
self.type.oclIsKindOf(ReferenceType)

3. The type of a Variable must always conform to the
type of the JavaValue held by the Variable.
context Variable inv:
self.value.type.oclIsKindOf

(self.declaredType)

Invocation

1. The type of an invocation’s return value must conform
to the result type of the invocation’s method.
context Invocation inv:
self.returnValue.type.
oclIsKindOf(self.method.resultType)

Both diagrams have an intersection (the classes Ja-
vaType, ClassType, and Variable) which can be regarded
as the core of the meta model. However, the information
shown in this part differs. For the concerned classes, only
those attributes and associations are shown that are relevant
in the respective context. This approach of showing data
selectively is consistent with the UML semantics guide.

The associationClassType.instance for example
appears in the Invocation diagram for better readability but
primarily, because it is only relevant for the representation
of the runtime structure. It refers to the variable which is
calledthis in the source code, i.e. the object of a certain
class that is created when the classes’ constructor is called.

3 Mapping Rules

Once an instance of the meta model has been created,
a set of rules is needed that specifies how to use the infor-
mation represented by it for the construction of the desired



PrimitiveValue ReferenceValue

NullReference

ClassInstance Array

JavaObject

JavaValue

ReferenceType PrimitiveType

InterfaceType ArrayTypeClassType

Variable

pointsTo

1

JavaType

conformsTo*

1type 1

value

1

type

1

declaredType

Figure 2. Types

name:String

FormalParameter

name:String

Method

JavaType

Variable

name:String

ClassType

name:String

Invocation

*

parameter

1
1

type

resultType

local*

1

method owner

*

1

*

instance

field

returnValue

1

method 1

*parameter owner1

*

invocation

{ordered}
JavaValue

Figure 3. Invocations



view on the program code. In our case, the view is a collab-
oration diagram. A crucial point in this translation is that
in our model, we have only descriptions of classes, some
of them with object-valued attributes, while in the result-
ing collaboration, we show only instances of the classes.
Therefore, we have to provide rules for the representation of
attributes and their transformation into elements of the col-
laboration context, and also for the transformation of classes
into such elements.

Anticipating section 4 that describes the procedure of
translation, two possible cases emerge which indicate that
an object has to be added to the collaboration context: it
may be the source of a method invocation or its destina-
tion. Invoking a method requires that a link exists between
the source and the destination object. After determining the
source and destination object of a link, both have to be ex-
amined if they are already part of the context. If not, they
are added.

The rules are divided into two parts: The first one holds
rules for the creation of links, which belong to the collabo-
ration context. The second part contains rules for the estab-
lishment of messages between objects, i.e. the interaction
between objects.

1. The connecting links between objects are derived from
a classes’ member variables. If source and destination
object of a link are identical, the link is a self reference
and the stereotype self is added to it.

(R.1) ClassType.field holds information about
a link between two objects.

(R.1a) ClassType.name ! Type of the link’s
source object.

(R.1b) ClassType.field.declaredType !
Type of the link’s destination object.

(R.1c) ClassType.field.name! Rolename at
destination end. Since a link is used here as a repre-
sentation of a class attribute, no rolename is given for
the source end of the link.

2. A method invocation is shown in the collaboration di-
agram as a message between two linked objects.

(R.2) Method.invocation! Message between
two objects.

The source object from which an invocation is per-
formed is given by a reference to the class declaring the
method. In the resulting collaboration diagram, this
object is the originator of the message. For example,
given an invocationout.println() that is part of
the methodhello() in classHelloWorld, Hel-
loWorld is the class declaring the method in question
(hello()) and the source object is an instance of this
class.

(R.2.1) Method.owner.instance! Source ob-
ject of invocation.

The source object’s type isMethod.owner.
instance.declaredType, which can be validly
shortened toMethod.owner, because the attribute
instance.type of a class is always its identity.

(R.2.1a) Method.owner ! Type of invocation-
source object.

The destination object on which the invocation of a
method is performed is either a self reference to or
a member attribute of the owner class, or held by a
variable of the method declaring the invocation. For
example in an invocationout.println(), out is
the destination object. For an invocationprintln(),
where the object is omitted, the destination object is
implicitly this.

(R.2.2) Method.invocation.owner! The in-
vocation’s destination object (the object, on which the
invocation is performed).

(R.2.2a) Method.invocation.owner.
declaredType ! Type of invocation-destination
object.

The name of the invoked method is used as message
label. In terms of the aforementioned HelloWorld ex-
ample,println() is the method name that is used
as label for the message sent from the source object of
type HelloWorld to the destination objectout (whose
type is not relevant here).

(R.2.3) Method.invocation.method.name! Message label.

4 Procedure

The transformation procedure consists of two modular
parts, which convert the information from the Java program
code into a canonical form and then create a collaboration
diagram from it. In the first step, the information from the
program code is represented as an instance of the Java meta
model introduced in section 2. No transformation occurs in
this stage, since the diagrammatic form is just another repre-
sentation of the information contained in the program code.
However, this notation shows intentionally only a subset of
the information.

Once the model is complete, it is imaginable to apply dif-
ferent strategies to it to extract and transform the contained
information. This way it is possible to create different views
of the same model, depending on the aspects that are to be
emphasized. In the context of this paper, we create a collab-
oration diagram to show the interaction between classes by
using the algorithm presented below, which is given here in



an OCL-like pseudo code to distinct it from the Java code
of the example following afterwards.

traverseModel(m:Method){
for each inv:Invocation in m do{
//[*]
source:Variable=m.owner.instance;
dest:Variable=inv.owner;
addContext(source, dest);
addInteraction(source,

dest,
inv.method)

traverseModel(inv.method)
}

}

[*]: The source of an interaction is always the
this instance created by the owner class of the observed
method, as the owner class holds the specification of the
method, which is given by the method’s source code in the
respective class.

The methodtraverseModel(...) describes the al-
gorithm that is used to extract the information from the
model (see fig. 4 for an example situation). It traverses
parts of the model’s underlying datastructure in depth-first
order and constructs the collaboration diagram. In the initial
call, it is passed a reference to the method for which the di-
agram is generated. Based on the entities of the model and
the transformation rules given above (see section 3), it es-
tablishes the new catenations and entities that constitutethe
collaboration diagram. When using only the methodad-
dContext(...), the collaboration context is established
by adding the respectivesource anddest objects to the
object model of the collaboration (if not yet contained) and
by establishing links between them. When using the method
addInteraction(...) too, the complete diagram in-
cluding the description of the dynamic behaviour (i.e. the
messages exchanged between objects) is created.

Note that the collaboration context created by the algo-
rithm contains only those objects that are involved in the in-
teraction. Attributes of classes or methods that are not used
for method invocation do not appear. This characteristic
pays tribute to the intention of this paper, not to emphasize
the static structure of the program code, but its behavioural
aspects as well as the underlying parts of the static structure.

5 Example

This section presents an example that uses the algo-
rithm described above to create a collaboration for a sim-
ple method from the Java source code given below. The

code describes a window (as part of a graphical user in-
terface) holding a text pane (i.e. a container displaying a
string of ASCII characters). The pane in turn has a content,
which holds the text string to show in the pane. We want
to capture the collaboration and interaction of the method
Window.display() that displays the window and its
content on the screen. The actual drawing is done by the
methoddrawDecorations(), which is not interesting
here. The methoddraw() from TextPane is called by
Window to delegate the rendering of the pane to the com-
ponent itself. To do so,TextPane must first request its
current content by callinggetContent() on its Con-
tent attribute and then callingpaint() to do the actual
rendering. This finishes the procedure.

public class Window{
private TextPane tp;
public Window(){tp=new TextPane();}

public void display(){
this.drawDecorations();
tp.draw();

}
private void drawDecorations(){

//draw the window and borders
}

}
public class TextPane{

Content c;

public TextPane(){}

public void draw(){
String tmp = c.getContent();
paint(tmp);

}

private void paint(String s){
//draw String into Pane

}
}
public class Content{

private String content="";

public Content(String s){
this.content = s;

}
public void setContent(String s){

content=s;
}
public String getContent(){

return content;
}

}



:ClassType

name="Window"

:Invocation

:Method

name="draw"

:Variable

name="c"

name="display"

:Method

:Method

name="drawDecorations"

:Invocation

:Invocation

:Invocation

:Method

name="setContent"

:JavaType

name="String"

:FormalParameter

name="getContent"

:Method

:Variable

name="tp"

:Variable

name="this"

:ClassType

name="Content"

:Variable

name="this"

:Method

name="paint"

:Variable

name="this"

:Variable

:ClassType

name="TextPane"

:ClassType

name="String"

type

method

ownerowner
invocation

method
owner

owner invocation

invocation

type

parameter

ownerowner
method

method

method

invocation

method

instance

owner

owner

owner

owner

method

type

field

type type instance

instance
field

type

returnValue

method

method

method

type

Figure 4. A model that represents the information from the so urce code



In a first step, the source code is represented as
an instance of the Java meta model (fig.4). Now,
traverseModel(...) is called with methodWin-
dow.display() as parameter and starts walking through
the data structure of the model. The first invocation encoun-
tered is a call todrawDecorations(). Its underlying
link is a self reference to Window, as the link’s source and
destination are identical. The “this” instance of Window is
added to the collaboration context and the link is added with
the stereotype�self�. Now, the new message is added to
the interaction, with the label of the message being provided
by the attributemethod.name of the invocation.

:Window

«self»

1: drawDecorations()

display()

Figure 5. Collaboration Diagram after 1st iter-
ation in display()

In the resulting (yet incomplete) diagram, the caller of
display(), who is not part of the given source code, is
shown as a stereotype icon as shown in [14].

After finishing the first invocation, thetraverse-
Model(...) calls itself withdrawDecorations()
as parameter. However, this run does not yield any new in-
sights, as the method does not contain any invocations. The
method returns to its previous recursion depth and continues
the examination ofdisplay().

The second invocation encountered indisplay() is a
call to methoddraw(). The source object of the new link
is again the self instance of class Window (as for all invoca-
tions from a method declared in this class). The destination
object, given by the invocation’sowner attribute, is a Vari-
able with name “tp” and type TextPane. As it is not part of
the collaboration context yet, it is added to it, as is the new
link. The Variable’s name is used as rolename at the link’s
destination end.

Having finished the second iteration,traverse-
Model(...) calls itself withdraw() of class TextPane
as a parameter. Note that the focus of the algorithm has
moved now not only to another method, but also to a dif-
ferent class: The source object of the underlying link is still
the “this” instance, but this time of class TextPane, which
declaresdraw().

The first invocation encountered is a call togetCon-
tent(). The destination object is again given by the in-
vocation’s owner, a Variable ‘c’ with type Context. The

new object as well as the link are added to the collaboration
context. Then, the new message is added to the diagrams
interaction part.

:Window

:TextPane

«self»

tp

2: draw()

1: drawDecorations()

display()

Figure 6. Collaboration Diagram after 2nd it-
eration in display()

The first two messages (fig. 6) are numbered on the same
nesting level, as both are sent from the same source (the
instance of Window). For the call ofgetContent(), a
new situation arises, as this is a subsequent call, originating
from methoddraw() (which in turn was called bydis-
play()). Therefore, a new nesting level is added for the
call togetContent() (fig. 7).

:Content

:Window

:TextPanec

tp

«self»

2: draw()

1: drawDecorations()

display()

2.1: getContent()

Figure 7. Collaboration Diagram after 1st iter-
ation in draw()

As getContent() does not contain any method invo-
cations,traverseModel() returns immediately from it
and continues with methoddraw().

The last invocation indraw() is a call topaint(),
which is declared in class TextPane(). Source (the “this”



instance of the class declaringdraw()) and destination
(the owner object of the invocation ofpaint()) are iden-
tical, what means that the link underlying the message is
a self reference. As the respective object (the instance of
TextPane) is already part of the collaboration context, only
the new link has to be added to it.

:Window

:TextPane:Content c

tp

«self»

«self»

2: draw()

2.2: paint(tmp)

1: drawDecorations()

display()

2.1: getContent()

Figure 8. Collaboration Diagram after 2nd it-
eration in draw()

After adding the message to the diagram, the algorithm
jumps into methodpaint(), which does not contain any
invocations. Therefore it returns immediately and, as there
are no further invocations, terminates.

6 Questions of Usability

The application of collaboration diagrams as described
in this paper appears to be useful in many cases. However,
the observed methods should not be too large with respect
to the number of invocations and referenced objects. For
relatively long method bodies, the resulting diagrams tend
to be rather long winded. In this situation, it will be possible
to use rewrite rules to simplify complex diagrams to simpler
and more abstract ones (like we have done this for class di-
agrams in [6]). For example, it is imaginable to examine
the program code for interaction patterns that may be repre-
sented with a more compressed notation. This is subject to
further research.

Especially concerning non-trivial systems, a sensible use
of collaboration diagrams requires a certain degree of in-
teractivity between the communicating objects in question.

For the simple cases, a tabular list of method calls can be
rendered more easily and provides often better lucidity.

By means of collaboration diagrams, causal chains of
method calls can be emphasized while still having the ob-
ject relations present. However, with increasing size of the
chains, the application of sequence diagrams seems more
appropriate here and will be studied in the future.

Collaboration diagrams were not originally meant to
document Java code, but to model the relationships between
objects which play different roles, as well as the interaction
between them. If the procedure is reversed as described in
this paper, this implies that in the resulting diagrams, only
those elements of the Java code can be shown, for which a
representation exists in collaboration diagrams. This means
that the view on the program code is actually restricted by
the way collaboration diagrams are defined in the UML
meta model. To amend this, it would be necessary to ex-
tend the meta model. For this reason, not all elements of a
Java method can be shown precisely by means of a collab-
oration diagram. This is however, as already stated in the
introduction, not the intention of this approach, which aims
at the documentation of the relationships between objects
and their interaction.

7 Summary and Conclusion

In this paper, we have shown a new approach for cap-
turing information on static structure as well as dynamic
behaviour of Java program code. Our approach bases on
representing code structures as instances of the Java meta
model, which is also presented in this paper and which is
based on the Java language specification in [8]. An al-
gorithm is presented which walks through parts of a meta
model instance and thereby creates a collaboration diagram
showing the object relationships and interaction. The func-
tionality of the algorithm depends on a set of mapping rules
that specifies how certain parts of the meta model instance
are to be interpreted and used in the resulting diagram.

It is possible to create different views of the program
code by exchanging or modifying the algorithm that collects
the required information and by providing a new set of map-
ping rules. With our approach, the dimension of these views
is limited not only by the UML meta model (as mentioned
before), but also by our Java meta model. It is imaginable to
specify views which require extensions or modifications of
this meta model. To capture the program flow of methods
diagrammatically, for example, it would be necessary to ex-
tend the meta model by adding information about program
flow constructs, like e.g. iteration and loop.



Acknowledgements

Thanks to Oliver Radfelder and Mark Richters for dis-
cussions on UML and Java. Thanks to Jürgen Ebert for crit-
ical remarks on OCL and for pointing to relevant work in
the field. The remarks of the referees helped to improve the
paper.

References

[1] S. Chung and Y.-S. Lee. Reverse Software Engineering
with UML for Web Site Maintenance. In10th International
Database Symposium on Mobile, XML and Post-relational
Databases, Hong Kong, June, 2000, 2000.

[2] S. Demeyer, S. Ducasse, and S. Tichelaar. Why Unified
is not Universal? UML Shortcomings for Coping with
Round-trip Engineering. In R. France and B. Rumpe, edi-
tors,UML’99 - The Unified Modeling Language. Beyond the
Standard. Second International Conference, Fort Collins,
CO, USA, October 28-30. 1999, Proceedings, volume 1723
of LNCS, pages 630–644. Springer, 1999.

[3] D. Duggan. Modular Type-Based Reverse Engineering
of Parameterized Types in Java Code. InProceedings of
the Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 97–113, 1999.

[4] J. Ebert and R. Süttenbach. An OMT Metamodel. Fach-
berichte Informatik 13/97, Universität Koblenz-Landau,In-
stitut für Informatik, Koblenz, 1997.

[5] G. Engels, R. Hücking, S. Sauer, and A. Wagner. UML Col-
laboration Diagrams and Their Transformation to Java. In
R. France and B. Rumpe, editors,Proc. 2nd Int. Conf. Uni-
fied Modeling Language (UML’99), volume 1723 ofLecture
Notes in Computer Science, pages 473–488. Springer Ver-
lag, 1999.

[6] M. Gogolla and R. Kollmann. Re-Documentation of Java
with UML Class Diagrams. In E. Chikofsky, editor,Proc.
7th Reengineering Forum, Reengineering Week 2000 Zürich,
pages REF 41–REF 48. Reengineering Forum, Burlington,
Massachusetts, 2000.

[7] M. Gogolla and M. Richters. Transformation Rules for
UML Class Diagrams. In J. Bézivin and P.-A. Muller,
editors, Proc. 1st Int. Workshop Unified Modeling Lan-
guage (UML’98), volume 1618 ofLNCS, pages 92–106.
Springer, Berlin, 1999.

[8] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification, 1996. Internet:http://java.sun.com/
docs/books/jls/html/index.html.

[9] A. M. I-Logix. Rhapsody. Version 2.1, 1998.
[10] A. M. I-Logix. Statemate MAGNUM. Release 1.2, 1999.
[11] J.-H. Jahnke and A. Zündorf. Specification and Implemen-

tation of a Distributed Planning and Information System for
Courses based on Story Driven Modelling. InProc. of Intl.
Workshop on Software Specification and Design (IWSSD-9),
Kyoto, Japan, pages 77–86. IEEE Press, 1998.

[12] OMG. Object Constraint Language Specification. InOMG
Unified Modeling Language Specification, Version 1.3, June
1999[13], chapter 7.

[13] OMG, editor. OMG Unified Modeling Language Specifica-
tion, Version 1.3, June 1999. Object Management Group,
Inc., Framingham, Mass., Internet:http://www.omg.
org, 1999.

[14] OMG. UML Notation Guide. InOMG Unified Modeling
Language Specification, Version 1.3, June 1999[13], chap-
ter 3.

[15] OMG. UML Semantics. InOMG Unified Modeling Lan-
guage Specification, Version 1.3, June 1999[13], chapter 2.

[16] Rational. Rose Enterprise Edition 2000e, 2000.
[17] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Mod-

eling Language Reference Manual. Addison-Wesley, 1998.
[18] G. D. M. Serugendo and N. Guelfi. Using Object-Oriented

Algebraic Nets for the Reverse Engineering of Java Pro-
grams: A Case Study. InProceedings of the International
Conference on Application of Concurrency to System Design
(CSD’98), pages 166–176. IEEE Computer Society Press,
1998. Also available as Technical Report (EPFL-DI No
98/267).

[19] R. Süttenbach and J. Ebert. A Booch Metamodel. Fach-
bericht Informatik 5/97, Universität Koblenz-Landau, Insti-
tut für Informatik, Koblenz, 1997.

[20] TogetherSoft. Together 4.2, 2000.
[21] U.Nickel, J.Niere, and A.Zündorf. The Fujaba Environment.

In ICSE 2000 - The 22nd International Conference on Soft-
ware Engineering, June 4-11th, Limmerick, Ireland, pages
742–745. ACM Press, 2000.


