In Pedro Sousa and Jirgen Ebert, editors, Proc. 5th Europea Conference on Software Maintenance and Reengineering. EE, Los Alamitos, 2001

Capturing Dynamic Program Behaviour with UML Collaboratio n Diagrams

Ralf Kollmann & Martin Gogolla
University of Bremen
Department of Computer Science
PO Box 330440, D-28334 Bremen
{kollmanngogolla @informatik.uni-bremen.de

Abstract into Java code. Diagrams are used to graphically specify
the functional behaviour of objects in terms of the interac-
The UML provides means to specify both static and tions between them. For each object, the collaboration con-
dynamic aspects of object-oriented software systems andext is shown and also, the methods called at other objects
can be used to assist in all phases of a software devel-are displayed in temporal order of their invocation. The di-
opment process. With growing support by CASE tools, agrams are used as input for a set of transformation rules,
its applications become more and more widespread. Infrom which Java code segments can be derived.
addition to the automatic generation of class code from While the application of UML in CASE tools assist-
diagrams, the recovery of static structure from source code ing forward engineering processes is rather wide-spread
has become common, too. In this paper however, we focusoncerning modeling of static structure, some tools like
on the extraction of behavioural information from program Rose [16] and Together [20] additionally provide reverse
code. We introduce a restricted meta model for Java engineering facilities in the same field. From existing
code and present a new approach to extract the requiredsource code provided as input, UML class diagrams can
data, which will then be rendered as UML collaboration be created which describe the static aspects of the soft-

diagrams. ware. Further research on this subject involves lifting
these implementation-view class diagrams to a more ab-
Keywords: UML collaboration diagram, re- stract level to allow deployment of the more advanced fea-
documentation, reverse engineering, Java, dynamictures of UML [6].
behaviour, meta model. Concerning forward engineering, modeling and code

generation of dynamic behaviour are also supported by
some CASE tools, like e.g. Rhapsody [9] and State-
mate [10]. Both use UML statecharts as specification no-
tation. In an effort to realize roundtrip engineering oftsta
as well as dynamic program structures, the Fujaba environ-
The Unified Modeling Language (UML, [14] [15] [17]) ment [21] combines both forward and reverse engineering
provides means to describe static and dynamic aspects ofechniques. It is based on UML diagrams atdry driven
object-oriented software systems with a graphical notatio modeling(SDM) [11].
which is founded on a semi-formal basis. It allows speci- In this paper, we present a UML-based approach to ex-
fication on different levels of detail (e.g. design vs. imple tract information about the dynamic behaviour of programs
mentation) and therefore suits well to assist in all pha$es o and show additionally, how UML collaboration diagrams
software development processes. While many CASE toolscan be used for graphical representation of the results. To
supportthe UML today, some also provide a bridge betweenour knowledge, reverse engineneering of Java with UML
design and implementation through code generators. Thecollaboration diagrams has not been studied before. Our
most common deployment is the use of class diagrams toapproach is meant to yield a partial program-flow analysis.
specify the static structure of a program which is then con- As [5] elaborates, collaboration diagrams are suitable as a
verted into a number of class stubs in a given programmingbasis for automatic code generation for operations. This di
language. agram kind allows to describe the interaction of objects by
In [5], it is shown that it is also possible to adapt this means of messages exchanged between them, as well as the
procedure to dynamic behaviour. The authors present ancollaboration contexti.e. the structural information upon
approach for the transformation of collaboration diagrams which the interaction relies. However, it is not possible to

1 Introduction

specify all dynamic aspects of a given system. Therefore,not the first object modeling technique with a meta model

we focus on the aforementioned two kinds of information, as a formal foundation.

namely object interaction and collaboration context. In the field of reverse engineering, related work encom-
To give a better understanding on how we intend to use passes [18], which describes the use of high-level petsi net

collaboration diagrams for showing the dynamic behaviour to reverse engineer Java applets and [3], which conceatrate

of Java programs, we present a small example that showson parametrized Java types. [2] analyses the UML with

two simple classes exchanging messages. a focus on round-trip and reverse engineering capabilities
. while [1] employs UML for the reverse engineering of web
public class Helloverld{ sites. Lastly, the results of this paper are influenced by our
] earlier work on properties of UML class diagrams [7].
public Hel I'overld(){ The following sections of this paper are structured as fol-
hel 1o(); lows. In section 2, we will introduce a meta model for parts
} of Java, which will allow us to bring the necessary informa-
) . tion from the Java code into a canonical form, which in turn
public void hello(){ enables us to extract information about the static strecisr
System out. printin well as the object interaction. Based on the mapping rules
("Hello vorid"); introduced in section 3, we present a recursive algorithm
} for the processing of the information from an instance of
} the meta model in section 4 and go through an exemplary

application in section 5. We close with considerations abou

The focus of the collaboration diagram in fig. 1 is on . C . .
guestions of applicability and a final conclusion.

methodhel | o() from classHel | oWor | d. The “user”
stereotype icon on the left represents an external caller of
the method who is not relevant here. The call from the 2 Java Meta Model

user shows always the examined method and points to the

class declaring it. The only action in methbél | o() is To analyze programs written in Java, it is at first neces-
acalltoprintln() from classPrint Streamviathe sary to know their structural composition (a complete de-
static attributeout from classSyst em(this is the usual scription of the language can be found in the Java Language
way of callingprintln() in Java). The collaboration Specification [8]). A specification of the program structure
context shows therefore instances of classslsl oWor | d is not only required for the mere parsing of the program
andPrint Streamas well as a link between both with code (in Java, this may be source code or byte code). In
the attribute name on it. The interaction encompasses theour approach, it is also important for the following step of
call to hel I o() from an external user and the call to processing the data: In the given scope of representing ex-

println() fromHel | oWorldtoPrintStream isting program structures with UML diagrams, we decided
to take a similar approach for our specification of the Java

helloQ) language. In the fashion of the UML document [13], a meta

% :HelloWorld model is used for this purpose. The meta model is based

on information from the Java Language Specification and
focuses on those parts that are necessary for the creation of
Liprintin() collaboration diagrams. The data extracted from the pro-
gram code may be represented as an instance of the meta
model, which will be used for the generation of the final

System.out
collaboration diagrams.
:PrintStream Since Java has - as can be expected from an object-
oriented language - a certain level of complexity, it is clea
Figure 1. A Collaboration Diagram for Hel- that there are certain parts of the language descriptian tha
loWorld are irrelevant with respect to the goals headed for in this pa

per: There is no representation for them in our meta model.
The meta model presented here should contain only those
Our approach relies on the UML meta model and pro- parts that are required for the rendering of collaboration
poses a restricted Java meta model. As far as we know acontext and interaction between objects. Two UML class
meta model in the style of the UML meta model has not diagrams suffice to capture these: diagram “Types” (fig. 2)
been yet proposed for Java. However, as the meta modelshows the coherence between types and values, their spe-
for OMT in [4] and Booch in [19] show, UML was by far cializations as well as the classes needed to interconnect

both. Thereby, the relation between classes and objects ilassType

modeled, too. The left generalization hierarchy shows val-
ues specialized to primitive and reference values which are
again specialized to null references. The right generaliza
tion hierarchy displays Java types with specializations to
primitive and reference types which again are specialized
to interface, class and array types. The connection between

1. The name of thenst ance field, referring to the
object created when calling the classes’ constructor, is
always"t hi s".
context Cl assType inv:
sel f.instance. nane="t hi s"

these two hierarchies is established by the class Variaole a Variable

the class JavaObject: Variables hold values and possess a
declared type; JavaObijects are pointed to by ReferenceVal-
ues and also possess a type. Note that the declared type of
a Variable is not necessarily the same as the type of the Ob-
ject: each Objectis an instance of a Class that must be com-
patible with the declared type of the Variable which holds
the reference pointing to the Object. The declared type of a
Variable is known at compile-time, while the dynamic type

of the Object (i.e. the Class that the Object belongs to) can
only be determined at run-time.

The second diagram “Invocations” (fig. 3) describes
those parts of Java method structures which are necessary
for the representation of the relations between classes and
methods as well as the invocation of methods by concrete
objects. Classes and also methods may have references to
objects and additionally, in methods, the invocation ofoth
methods on objects can be specified. This requires the meta
model to provide associations between these different con-
ceptual entities. An invocation refers to exactly one mdtho

1. Avariable holding a primitive value always has a
primitive type.
context Variable inv:
sel f.val ue. ocl I skKi ndOf (PrimtiveVal ue)
i mplies
self.type.ocl I skKindO (PrinmitiveType)

2. Avariable holding a reference value always has a
reference type.
context Variable inv:
sel f.val ue. ocl | sKi ndOf (Ref er enceVal ue)
i mplies
sel f. type. ocl I sKi ndOf (Ref er enceType)
3. The type of a Variable must always conform to the
type of the JavaValue held by the Variable.
context Variable inv:
sel f.val ue. type. ocl | sKi ndCf
(sel f.decl aredType)

has many parameter variables, has a return value variablgnyocation

and an owner being again a variable. A method has formal
parameters, a result type, and is owned by a class. Which
method is actually associated to the invocation depends on
the dynamic type of its object.

For some of the classes from the meta model, constraints
exist which cannot be expressed by means of the class di-
agram notation itself. Therefore, it is necessary to refine

1. Thetype of an invocation’s return value must conform
to the result type of the invocation’s method.
context Invocation inv:
sel f.returnVal ue. type.
ocl I ski ndOF (sel f. net hod. resul t Type)

Both diagrams have an intersection (the classes Ja-

the meta model with additional constraints, which are given vaType, ClassType, and Variable) which can be regarded
in OCL [12] notation. The main issue of these is to en- a5 the core of the meta model. However, the information
sure consistency between values and types. The followingshown in this part differs. For the concerned classes, only
set of OCL expressions is an exemplary excerpt from the those attributes and associations are shown that are n¢leva
complete list that would be necessary for translation odJav n the respective context. This approach of showing data
programs into collaboration diagrams. It shows a selection ge|ectively is consistent with the UML semantics guide.

Of the baSiC ConStraintS Wh|Ch are required for the example The associatiom assType' | nst ance for examp|e

in section 5. appears in the Invocation diagram for better readability bu
primarily, because it is only relevant for the represeotati

of the runtime structure. It refers to the variable which is
calledt hi s in the source code, i.e. the object of a certain
class that is created when the classes’ constructor isdcalle

Array

1. The type of an Array must always be ArrayType.
context Array inv:
sel f.type. ocl | sKi ndOf (ArrayType)

ClasslInstance

1. The type of a Classinstance must always be
ClassType.
cont ext C asslnstance inv:
sel f.type.ocl | sKi ndOF (Cl assType)

3 Mapping Rules

Once an instance of the meta model has been created,
a set of rules is needed that specifies how to use the infor-
mation represented by it for the construction of the desired

value Variable
JavaValue 1
Wpe‘l 1| declaredType
type JavaType
TN
o pointsTo .
PrimitiveValue ReferenceValue ; JavaObject
‘ ReferenceType PrimitiveType
NullReference
ClassInstance Array
InterfaceType ClassType ArrayType
*" conformsTo
Figure 2. Types
type
FormalParameter 1
— * 1 JavaType
name:Siring parameter resultType
method owner ClassType
Method " 1 yp
- name:String
name:String
method | 1
*\/ local * field
Variable 1 instance
name:String
parameter * 1| owner
invocation .
Invocation 1 JavaValue
{ordered} =
returnValue

Figure 3. Invocations

view on the program code. In our case, the view is a collab-
oration diagram. A crucial point in this translation is that
in our model, we have only descriptions of classes, some
of them with object-valued attributes, while in the result-
ing collaboration, we show only instances of the classes.
Therefore, we have to provide rules for the representation o
attributes and their transformation into elements of the co
laboration context, and also for the transformation ofsdgs
into such elements.

Anticipating section 4 that describes the procedure of
translation, two possible cases emerge which indicate that
an object has to be added to the collaboration context: it
may be the source of a method invocation or its destina-
tion. Invoking a method requires that a link exists between
the source and the destination object. After determinieg th
source and destination object of a link, both have to be ex-
amined if they are already part of the context. If not, they
are added.

The rules are divided into two parts: The first one holds
rules for the creation of links, which belong to the collabo-
ration context. The second part contains rules for the estab
lishment of messages between objects, i.e. the interaction
between objects.

1. The connecting links between objects are derived from
a classes’ member variables. If source and destination
object of a link are identical, the link is a self reference
and the stereotype self is added to it.

(R.1) Al assType. fi el d holds information about
a link between two objects.

(R.1a) d assType. nane — Type of the link's
source object.

(R.1b) O assType.field. decl aredType —
Type of the link’s destination object. 4

(R.1c) A assType. fi el d. nanme — Rolename at
destination end. Since a link is used here as a repre-
sentation of a class attribute, no rolename is given for
the source end of the link.

2. A method invocation is shown in the collaboration di-
agram as a message between two linked objects.

(R.2.1) Met hod. owner . i nst ance — Source ob-
ject of invocation.

The source object's type isvet hod. owner.

i nstance. decl ar edType, which can be validly
shortened tdvet hod. owner, because the attribute
i nstance. t ype of a class is always its identity.

(R.2.1a) Met hod. owner — Type of invocation-
source object.

The destination object on which the invocation of a
method is performed is either a self reference to or
a member attribute of the owner class, or held by a
variable of the method declaring the invocation. For
example in an invocatioout . pri ntln(), out is

the destination object. For aninvocationi nt 1 n(),
where the object is omitted, the destination object is
implicitly t hi s.

(R.2.2) Met hod. i nvocat i on. owner — The in-
vocation’s destination object (the object, on which the
invocation is performed).

(R.2.2a) Met hod. i nvocat i on. owner.
decl ar edType — Type of invocation-destination
object.

The name of the invoked method is used as message
label. In terms of the aforementioned HelloWorld ex-
ample,pri ntl n() is the method name that is used
as label for the message sent from the source object of
type HelloWorld to the destination objeztit (whose
type is not relevant here).

(R.2.3) Method.invocation. et hod. nane
— Message label.

Procedure

The transformation procedure consists of two modular
parts, which convert the information from the Java program
code into a canonical form and then create a collaboration
diagram from it. In the first step, the information from the
program code is represented as an instance of the Java meta

model introduced in section 2. No transformation occurs in

(R.2) Met hod. i nvocat i on — Message between

this stage, since the diagrammatic form is just anotheerepr

two objects. sentation of the information contained in the program code.

The source object from which an invocation is per- However, this notation shows intentionally only a subset of
formed s given by a reference to the class declaring the the information.

method. In the resulting collaboration diagram, this ~ Once the modelis complete, it is imaginable to apply dif-
object is the originator of the message. For example, ferent strategies to it to extract and transform the coein
given an invocatiorout . pri ntl n() thatis part of information. This way it is possible to create differentwge

the methodchel | o() in classHel | oWor | d, Hel - of the same model, depending on the aspects that are to be
| oWor | disthe class declaring the method in question emphasized. In the context of this paper, we create a collab-
(hel I o()) and the source object is an instance of this oration diagram to show the interaction between classes by
class. using the algorithm presented below, which is given here in

an OCL-like pseudo code to distinct it from the Java code code describes a window (as part of a graphical user in-
of the example following afterwards. terface) holding a text pane (i.e. a container displaying a
string of ASCII characters). The pane in turn has a content,
which holds the text string to show in the pane. We want
to capture the collaboration and interaction of the method
W ndow. di spl ay() that displays the window and its
content on the screen. The actual drawing is done by the
methoddr awDecor at i ons(), which is not interesting
here. The methodr aw() from Text Pane is called by

W ndowto delegate the rendering of the pane to the com-
ponent itself. To do soJext Pane must first request its
current content by callingget Cont ent () on its Con-

t ent attribute and then callingai nt () to do the actual
rendering. This finishes the procedure.

traver seMbdel (m Met hod) {
for each inv:lnvocation in m do{
I1T*]
sour ce: Vari abl e=m owner . i nst ance;
dest: Vari abl e=i nv. owner;
addCont ext (source, dest);
addl nt eracti on(source,
dest,
i nv. met hod)

traver seMbdel (i nv. met hod)
} public class W ndow
} private TextPane tp;

ublic Wndo t p=new Text Pane();
[*]: The source of aninteraction is always the P WO tte O3

t hi s instance created by the owner class of the observed public void display(){

method, as the owner class holds the specification of the t hi s. dr awDecor at i ons() :
method, which is given by the method’s source code in the tp.draw(): '
respective class. } '

private void drawbDecorations(){

The method r aver seMbdel (. ..) describesthe al- //draw the wi ndow and borders

gorithm that is used to extract the information from the
model (see fig. 4 for an example situation). It traverses
parts of the model’s underlying da'tastrL'Jcture in depth—firs public class TextPane{
order and constructs the collaboration diagram. In théinit Content c:

call, it is passed a reference to the method for which the di-

agram is generated. Based on the entities of the model and publ i ¢ Text Pane(){}
the transformation rules given above (see section 3), it es-

tablishes the new catenations and entities that constitate public void draw(){
collaboration diagram. When using only the metfamtt

dCont ext (.. .),the collaboration contextis established

by adding the respectiv@our ce anddest objects to the }
object model of the collaboration (if not yet contained) and
by establishing links between them. When using the method
addl nteraction(...) too, the complete diagram in-
cluding the description of the dynamic behaviour (i.e. the }
messages exchanged between objects) is created.

Note that the collaboration context created by the algo-
rithm contains only those objects that are involved in the in
teraction. Attributes of classes or methods that are nat use
for method invocation do not appear. This characteristic public Content(String s){
pays tribute to the intention of this paper, not to emphasize
the static structure of the program code, but its behavioura
aspects as well as the underlying parts of the static streictu

String tnp = c.getContent();
pai nt (tnp);

private void paint(String s){
/ldraw String into Pane

public class Content{
private String content="";

this.content = s;

public void setContent(String s){

cont ent =s;
5 Example }
public String getContent()({
This section presents an example that uses the algo- return content;
rithm described above to create a collaboration for a sim- }

ple method from the Java source code given below. The}

Figure 4. A model that represents the information from the so

name="setContent"

parameter

type) :Variable
instance -
ClassType_ name="this"
name="Window" owner
owner| owner :Method invocation
—ethod | name="display" L :Invocation
invocation | :|nyocation
method -
method
i :Method
field - :ClassType
‘Variable name="drawDecorations" _
- name="String"
name="tp" OWner type
:‘Variable
method method returnValue
:Method
type owner invocation | i
name="draw" :Invocation
:ClassType
invocation
name="TextPane" ‘Invocation
type owner :Method method
method
name="paint"
field owner
instance| :Variable
:Variable
name="this"
name="c"
owner
:Variable
type type ‘ instance
name="this"
:ClassType
name="Content" :Method method
:JavaType
owner owner " . bbbl A niedi
method | name="getContent :
name="String"
type
method | :Method

:FormalParameter

urce code

In a first step, the source code is represented asnew object as well as the link are added to the collaboration
an instance of the Java meta model (fig.4). Now, context. Then, the new message is added to the diagrams

traversehMdel (...) is called with methodWN n- interaction part.

dow. di spl ay() as parameter and starts walking through

the data structure of the model. The first invocation encoun- 1: drawDecorations()

tered is a call tadr awDecor ati ons() . Its underlying - "

link is a self reference to Window, as the link’s source and

destination are identical. The “this” instance of Window is «self»

added to the collaboration context and the link is added with display()

. —_—

the stereotype«selfs. Now, the new message is added to % ‘Window

the interaction, with the label of the message being pralide

by the attributaret hod. nane of the invocation.

) i 2: draw()
1: drawDecorations()
E—
tp
‘TextPane
. «self»
display()
bl)
% :Window Figure 6. Collaboration Diagram after 2nd it-

eration in display()

Figure 5. Collaboration Diagram after 1st iter-

ation in display() The first two messages (fig. 6) are numbered on the same

nesting level, as both are sent from the same source (the

In the resulting (yet incomplete) diagram, the caller of instance of Window). For the call gfet Content (), a
di spl ay(), who is not part of the given source code, is new situation arises, as this is a subsequent call, origipat

shown as a stereotype icon as shown in [14]. from methoddr aw() (which in turn was cglled bdi s-
pl ay()). Therefore, a new nesting level is added for the

After finishing the first invocation, theraver se- calltoget Cont ent () (fig. 7).

Model (...) calls itself withdr awDecor ati ons()

as parameter. However, this run does not yield any new in- 1. drawDecorations()

sights, as the method does not contain any invocations. The

method returns to its previous recursion depth and consinue

the examination ofli spl ay() .) «self»
The second invocation encounteredlinspl ay() isa M()

call to methoddr aw() . The source object of the new link % :Window

is again the self instance of class Window (as for all invoca-
tions from a method declared in this class). The destination

object, given by the invocation®aner attribute, is a Vari- i 2: draw()
able with name “tp” and type TextPane. As it is not part of

the collaboration context yet, it is added to it, as is the new

2.1: getContent() tp

link. The Variable’s name is used as rolename at the link's) .

destination end. :Content ¢ ‘TextPane
Having finished the second iteratiori,r aver se-

Model (.. .) callsitself withdr aw() of class TextPane Figure 7. Collaboration Diagram after 1st iter-

as a parameter. Note that the focus of the algorithm has ation in draw()

moved now not only to another method, but also to a dif-

ferent class: The source object of the underlying link it sti

the “this” instance, but this time of class TextPane, which Asget Cont ent () does not contain any method invo-

declaregir aw() . cationst r aver seModel () returns immediately from it
The first invocation encountered is a callget Con- and continues with methadr aw() .

t ent (). The destination object is again given by the in- The last invocation irdr aw() is a call topai nt (),

vocation’s owner, a Variable ‘c’ with type Context. The which is declared in class TextPane(). Source (the “this”

instance of the class declarimy aw()) and destination For the simple cases, a tabular list of method calls can be
(the owner object of the invocation pfai nt ()) are iden- rendered more easily and provides often better lucidity.
tical, what means that the link underlying the message is
a self reference. As the respective object (the instance of
TextPane) is already part of the collaboration contexty onl
the new link has to be added to it.

By means of collaboration diagrams, causal chains of
method calls can be emphasized while still having the ob-
ject relations present. However, with increasing size ef th
chains, the application of sequence diagrams seems more

_ appropriate here and will be studied in the future.
1: drawDecorations()

—_— Collaboration diagrams were not originally meant to
document Java code, but to model the relationships between
objects which play different roles, as well as the inteiatti

% display() «sel> between them. If the procedure is reversed as described in
E—

‘Window this paper, this implies that in the resulting diagramsyonl
those elements of the Java code can be shown, for which a
representation exists in collaboration diagrams. Thismaea
that the view on the program code is actually restricted by
the way collaboration diagrams are defined in the UML
2.1: getContent() tp meta model. To amend this', it would be necessary to ex-
-— tend the meta model. For this reason, not all elements of a
:Content [‘TextPane Java method can be shown precisely by means of a collab-
S e B oration diagram. This is however, as already stated in the
introduction, not the intention of this approach, which aim
at the documentation of the relationships between objects
. and their interaction.

2.2: paint(tmp)

i 2: draw()

«self»

Figure 8. Collaboration Diagram after 2nd it-

o 7 Summary and Conclusion
eration in draw()

After adding the message to the diagram, the algorithm N this paper, we have shown a new approach for cap-
jumps into methogbai nt () , which does not contain any turing information on static structure as well as dynamic

invocations. Therefore it returns immediately and, aseher Pehaviour of Java program code. Our approach bases on
are no further invocations. terminates. representing code structures as instances of the Java meta

model, which is also presented in this paper and which is

based on the Java language specification in [8]. An al-
6 Questions of Usability gorithm is presented which walks through parts of a meta

model instance and thereby creates a collaboration diagram

The application of collaboration diagrams as described Showing the object relationships and interaction. The func
in this paper appears to be useful in many cases. Howevertionality of the algorithm depends on a set of mapping rules
the observed methods should not be too large with respec#hat specifies how certain parts of the meta model instance
to the number of invocations and referenced objects. Fora'® 1o be interpreted and used in the resulting diagram.

relatively long method bodies, the resulting diagrams tend |t is possible to create different views of the program
to be rather long winded. In this situation, it will be podsib code by exchanging or modifying the algorithm that collects
to use rewrite rules to simplify complex diagrams to simpler the required information and by providing a new set of map-
and more abstract ones (like we have done this for class di-ping rules. With our approach, the dimension of these views
agrams in [6]). For example, it is imaginable to examine is limited not only by the UML meta model (as mentioned
the program code for interaction patterns that may be repre-pefore), but also by our Java meta model. Itis imaginable to
sented with a more compressed notation. This is subject tospecify views which require extensions or modifications of
further research. this meta model. To capture the program flow of methods

Especially concerning non-trivial systems, a sensible usediagrammatically, for example, it would be necessary to ex-
of collaboration diagrams requires a certain degree of in- tend the meta model by adding information about program
teractivity between the communicating objects in question flow constructs, like e.g. iteration and loop.

Acknowledgements

Thanks to Oliver Radfelder and Mark Richters for dis-
cussions on UML and Java. Thanks to Jurgen Ebert for crit-
ical remarks on OCL and for pointing to relevant work in

the field. The remarks of the referees helped to improve the

paper.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]
(10]
(11]

(12]

S. Chung and Y.-S. Lee. Reverse Software Engineering
with UML for Web Site Maintenance. 120th International
Database Symposium on Mobile, XML and Post-relational
Databases, Hong Kong, June, 20@000.

S. Demeyer, S. Ducasse, and S. Tichelaar. Why Unified
is not Universal? UML Shortcomings for Coping with
Round-trip Engineering. In R. France and B. Rumpe, edi-
tors,UML'99 - The Unified Modeling Language. Beyond the
Standard. Second International Conference, Fort Collins,
CO, USA, October 28-30. 1999, Proceedingdume 1723

of LNCS pages 630—644. Springer, 1999.

D. Duggan. Modular Type-Based Reverse Engineering
of Parameterized Types in Java Code. Proceedings of
the Conference on Object-Oriented Programming, Systems,
Languages, and Applicationpages 97-113, 1999.

J. Ebert and R. Suttenbach. An OMT Metamodel. Fach-
berichte Informatik 13/97, Universitat Koblenz-Landaur,
stitut fur Informatik, Koblenz, 1997.

G. Engels, R. Hiicking, S. Sauer, and A. Wagner. UML Col-
laboration Diagrams and Their Transformation to Java. In
R. France and B. Rumpe, editoRoc. 2nd Int. Conf. Uni-
fied Modeling Language (UML'99yolume 1723 ot ecture
Notes in Computer Sciencpages 473-488. Springer Ver-
lag, 1999.

M. Gogolla and R. Kollmann. Re-Documentation of Java
with UML Class Diagrams. In E. Chikofsky, editdProc.

7th Reengineering Forum, Reengineering Week 2000 Zurich
pages REF 41-REF 48. Reengineering Forum, Burlington,
Massachusetts, 2000.

M. Gogolla and M. Richters. Transformation Rules for
UML Class Diagrams. In J. Bézivin and P.-A. Muller,
editors, Proc. 1st Int. Workshop Unified Modeling Lan-
guage (UML'98) volume 1618 ofLNCS pages 92-106.
Springer, Berlin, 1999.

J. Gosling, B. Joy, and G. Steele. The Java Language
Specification, 1996. Internelit t p: / / j ava. sun. coni
docs/ books/jls/htm/index. htm .

A. M. I-Logix. Rhapsody. Version 2.1, 1998.

A. M. I-Logix. Statemate MAGNUM. Release 1.2, 1999.
J.-H. Jahnke and A. Ziindorf. Specification and Impleme
tation of a Distributed Planning and Information System for
Courses based on Story Driven Modelling. Rroc. of Intl.
Workshop on Software Specification and Design (IWSSD-9),
Kyoto, Japanpages 77-86. IEEE Press, 1998.

OMG. Object Constraint Language Specification.QNG
Unified Modeling Language Specification, Version 1.3, June
1999[13], chapter 7.

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]
[21]

OMG, editor. OMG Unified Modeling Language Specifica-
tion, Version 1.3, June 19990bject Management Group,
Inc., Framingham, Mass., Internefit t p: / / www. ong.

or g, 1999.

OMG. UML Notation Guide. InOMG Unified Modeling
Language Specification, Version 1.3, June 1PE8), chap-

ter 3.

OMG. UML Semantics. IMOMG Unified Modeling Lan-
guage Specification, Version 1.3, June 1988, chapter 2.
Rational. Rose Enterprise Edition 2000e, 2000.

J. Rumbaugh, I. Jacobson, and G. Boothe Unified Mod-
eling Language Reference Manu@ddison-Wesley, 1998.

G. D. M. Serugendo and N. Guelfi. Using Object-Oriented
Algebraic Nets for the Reverse Engineering of Java Pro-
grams: A Case Study. IRroceedings of the International
Conference on Application of Concurrency to System Design
(CSD'98) pages 166-176. IEEE Computer Society Press,
1998. Also available as Technical Report (EPFL-DI No
98/267).

R. Suttenbach and J. Ebert. A Booch Metamodel. Fach-
bericht Informatik 5/97, Universitat Koblenz-Landaustia

tut fur Informatik, Koblenz, 1997.

TogetherSoft. Together 4.2, 2000.

U.Nickel, J.Niere, and A.Zundorf. The Fujaba Envinoant.

In ICSE 2000 - The 22nd International Conference on Soft-
ware Engineering, June 4-11th, Limmerick, Irelaq@hges
742-745. ACM Press, 2000.

